DOI QR코드

DOI QR Code

Corrosion initiation time models in RC coastal structures based on reliability approach

  • Djeddi, Lamine (Advanced Technologies in Mechanical Production Research Laboratory (LRTAPM), Badji Mokhtar - Annaba University) ;
  • Amirat, Abdelaziz (Advanced Technologies in Mechanical Production Research Laboratory (LRTAPM), Badji Mokhtar - Annaba University)
  • Received : 2019.06.23
  • Accepted : 2019.12.01
  • Published : 2020.02.25

Abstract

The present work proposes new engineering models for determining corrosion initiation time in concrete reinforcing steels in marine environment. The models are based on Fick's second law that is commonly used for chloride diffusion. The latter is based on deterministic analyses involving the most influencing parameters such as distance of the concrete structure from the seaside, depth of steel concrete cover, ambient temperature, relative humidity and the water-cement ratio. However, a realistic corrosion initiation time cannot be estimated because of the uncertainties associated to the different parameters of the models. Therefore a reliability approach using FORM/SORM method has been applied to develop the proposed engineering models integrating a limit state function and a reliability index β. As a result, the corrosion initiation time is expressed by new exponential engineering models where the uncertainties are associated to the model parameters. The main emerging result is a realistic decision tool for corrosion planning inspection.

Keywords

References

  1. Alonso, C. andrade, C., Castellote, M. and Castro, P. (2000), "Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar", Cement Concrete Res., 30(7), 1047-1055. https://doi.org/10.1016/S0008-8846(00)00265-9.
  2. Baji, H., Ronagh, H.R. and Melchers, R.E. (2016), "Reliability of ductility requirements in concrete design codes", Struct. Saf., 62, 76-87. https://doi.org/10.1016/j.strusafe.2016.06.005.
  3. Bazant, Z.P. (1979), "Physical model for steel corrosion in concrete sea structures-theory", ASCE J. Struct. Div., 105(6), 1137-1153. https://doi.org/10.1061/JSDEAG.0005168
  4. Cady, P.D. and Weyers, R.E. (1983), "Chloride penetration and the deterioration of concrete bridge decks", Cement Concrete Aggr., 5(2), 81-87. https://doi.org/10.1520/CCA10258J.
  5. Chen, D. and Mahadevan, S. (2008), "Chloride-induced reinforcement corrosion and concrete cracking simulation", Cement Concrete Compos., 30(3), 227-238. ttps://doi.org/10.1016/j.cemconcomp.2006.10.007.
  6. Choi, H.H. and Seo, J. (2009), "Safety assessment using imprecise reliability for corrosion‐damaged structures", Comput. Aid. Civil Infra. Eng., 24(4), 293-301. https://doi.org/10.1111/j.1467-8667.2009.00597.x.
  7. Dai, L., Wang, L., Bian, H., Zhang, J., Zhang, X. and Ma, Y., (2019), "Flexural capacity prediction of corroded prestressed concrete beams incorporating bond degradation", J. Aerosp. Eng., 32(4), 04019027. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001022.
  8. De Vera, G., Climent, M. A., Viqueira, E., Antón, C. and Andrade, C. (2007), "A test method for measuring chloride diffusion coefficients through partially saturated concrete. Part II: The instantaneous plane source diffusion case with chloride binding consideration", Cement Concrete Res., 37(5), 714-724. https://doi.org/10.1016/j.cemconres.2007.01.008.
  9. Djeddi, L., Khelif, R., Benmedakhene, S. and Favergeon, J. (2013), "Reliability of acoustic emission as a technique to detect corrosion and stress corrosion cracking on prestressing steel strands", Int. J. Electrochem. Sci., 8(1), 8356-8370.
  10. DuraCrete (2000), "Statistical quantification of the variables in the limit state functions", The European Union-Brite EuRam III-Contract BRPR-CT95-0132-Project BE95-1347/R9.
  11. Enright, M.P. and Frangopol, D.M. (1998), "Probabilistic analysis of resistance degradation of reinforced concrete bridge beams under corrosion", Eng. Struct., 20(11), 960-971. https://doi.org/10.1016/S0141-0296(97)00190-9.
  12. Fick, A. (1855), "On liquid diffusion, Poggendorffs Annalen", 94: 59, reprinted in (1995) "On liquid diffusion", J. Mem. Sci., 100, 33-38. https://doi.org/10.1016/0376-7388(94)00230-v.
  13. Hobbs, D.W. and Matthews, J.D. (1998), Minimum Requirements for Concrete to Resist Deterioration Due to Chloride Induced Corrosion, in: Minimum Requirements for Durable Concrete, D.W. Hobbs Edition, British Cement Association, Crowthorne, UK.
  14. Kioumarsi, M., Markeset, G. and Hooshmandi, S. (2017), "Effect of pit distance on failure probability of a corroded RC beam", Proced. Eng., 171, 526-533. https://doi.org/10.1016/j.proeng.2017.01.365
  15. Koleva, D.A., Hu, J., Fraaij, A.L.A., Stroeven, P., Boshkov, N. and De Wit, J.H.W. (2006), "Quantitative characterisation of steel/cement paste interface microstructure and corrosion phenomena in mortars suffering from chloride attack", Corrs. Sci., 48(12), 4001-4019. https://doi.org/10.1016/j.corsci.2006.03.003.
  16. Lemaire, M. (2013), Structural Reliability, John Wiley & Sons.
  17. Li, B., Cai, L. and Zhu, W. (2018), "Predicting service life of concrete structure exposed to sulfuric acid environment by grey system theory", Int. J. Civil Eng., 16(9), 1017-1027. https://doi.org/10.1007/s40999-017-0251-2.
  18. Liu, K.C., Yang, C.H., Liu, T.I., Chiu, L.Y. and Liu, G. (2017), "On-stream inspection for pitting corrosion defect of pressure vessels for intelligent and safe manufacturing", Int. J. Adv. Manu. Tech., 91(5-8), 1957-1966. https://doi.org/10.1007/s00170-016-9888-2.
  19. Liu, Y. and Weyers, R.E. (1998), "Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures", ACI Mater. J., 95(6), 675-681.
  20. Ma, Y., Wang, G., Guo, Z., Wang, L., Jiang, T. and Zhang, J. (2019), "Critical region method-based fatigue life prediction of notched steel wires of long-span bridges", Constr. Build. Mater., 225, 601-610. https://doi.org/10.1016/j.conbuildmat.2019.07.157.
  21. McGee, R. (1999), "Modelling of durability performance of Tasmanian bridges", ICASP8 Appl. Stat. Proba. Civil Eng., 1, 297-306.
  22. Morinaga, S. (1988), "Prediction of service lives of reinforced concrete buildings based on rate of corrosion of reinforcing steel", Report No. 23, Institute of Technology, Shimizu Corporation, Japan.
  23. Neville, A. (1995), "Chloride attack of reinforced concrete: an overview", Mater. Struct., 28(2), 63. https://doi.org/10.1007/BF02473172.
  24. Nogueira, C.G., Leonel, E.D. and Coda, H.B. (2012), "Probabilistic failure modelling of reinforced concrete structures subjected to chloride penetration", Int. J. Adv. Struct. Eng., 4(1), 10. https://doi.org/10.1186/2008-6695-4-10.
  25. Olawale, O.A., Xiao-Bao, Z.G. and Ji, Y. (2019), "Numerical analysis of concrete degradation due to chloride-induced steel corrosion", Adv. Concrete Constr., 7(4), 203-210. https://doi.org/10.12989/acc.2019.7.4.203.
  26. PHIMECA-reliability-based design and analysis (2002), User's manual, version 1.6, Aubiere, France. http://www.phimeca.com/
  27. Portland Cement Association (PCA) (2002), Types and Causes of Concrete Ddeterioration, Serial No. 2617, PCA, Illinois, USA.
  28. Prachasaree, W., Limkatanyu, S., Wangapisit, O. and Kraidam, S. (2018), "Field investigation of service performance of concrete bridges exposed to tropical marine environment", Int. J. Civil Eng., 16(12), 1757-1769. https://doi.org/10.1007/s40999-017-0250-3.
  29. Saetta, A.V., Scotta, R.V. and Vitaliani, R.V. (1993), "Analysis of chloride diffusion into partially saturated concrete", Mater. J., 90(5), 441-451.
  30. Samson, E. and Marchand, J. (2007), "Modeling the effect of temperature on ionic transport in cementitious materials", Cement Concrete Res., 37(3), 455-468. https://doi.org/10.1016/j.cemconres.2006.11.008.
  31. Sarveswaran, V., Smith, J.W. and Blockley, D.I. (1998), "Reliability of corrosion-damaged steel structures using interval probability theory", Struct. Saf., 20(3), 237-255. https://doi.org/10.1016/S0167-4730(98)00009-5.
  32. Shetty, A., Venkataramana, K. and Narayan, K.B. (2015), "Experimental and numerical investigation on flexural bond strength behavior of corroded NBS RC beam", Int. J. Adv. Struct. Eng., 7(3), 223-231. https://doi.org/10.1007/s40091-015-0093-6.
  33. Tuutti, K. (1982), Corrosion of Steel in Concrete, Cement-och betonginst, Stockholm, Holland.
  34. Vagelis, G.P. (2013), "Service life prediction of a reinforced concrete bridge exposed to chloride induced deterioration", Adv. Concrete Constr., 1(3), 201-213. http://dx.doi.org/10.12989/acc2013.1.3.201.
  35. Val, D.V. and Trapper, P.A. (2008), "Probabilistic evaluation of initiation time of chloride-induced corrosion", Reliab. Eng. Syst. Saf., 93(3), 364-372. https://doi.org/10.1016/j.ress.2006.12.010.
  36. Vedalakshmi, R., Rajagopal, K. and Palaniswamy, N. (2011), "Durability performance of rebar embedded in chloride admixed blended cement concretes", Corrs. Eng. Sci. Tech., 46(3), 256-270. https://doi.org/10.1179/174327809X409204.
  37. Vu, K.A.T. and Stewart, M.G. (2000), "Structural reliability of concrete bridges including improved chloride-induced corrosion models", Struct. Saf., 22(4), 313-333. https://doi.org/10.1016/S0167-4730(00)00018-7.
  38. Wang, L., Dai, L., Bian, H., Ma, Y. and Zhang, J. (2019), "Concrete cracking prediction under combined prestress and strand corrosion", Struct. Inf. Eng., 15(3), 285-295. https://doi.org/10.1080/15732479.2018.1550519.
  39. Wang, L., Yi, J., Zhang, J., Jiang, Y. and Zhang, X. (2017), "Effect of corrosion-induced crack on the bond between strand and concrete", Constr. Build. Mater., 153, 598-606. https://doi.org/10.1016/j.conbuildmat.2017.07.113.
  40. Wu, L., Li, W. and Yu, X. (2017), "Time-dependent chloride penetration in concrete in marine environments", Constr. Build. Mater., 152, 406-413. https://doi.org/10.1016/j.conbuildmat.2017.07.016.
  41. Yang, D.H., Yi, T.H. and Li, H.N. (2017), "A performance-based design method for chloride-induced cover cracking of RC structures", Comput. Concrete, 5(2), 117-143. http://dx.doi.org/10.12989/acc.2017.5.2.117.
  42. Zhang, H. (2018), "Durability reliability analysis for corroding concrete structures under uncertainty", Mech. Syst. Signal. Pr., 101, 26-37. https://doi.org/10.1016/j.ymssp.2017.08.027.
  43. Zhang, H., Mullen, R.L. and Muhanna, R.L. (2010), "Interval Monte Carlo methods for structural reliability", Struct. Saf., 32(3), 183-190. https://doi.org/10.1016/j.strusafe.2010.01.001.
  44. Zhang, M.Q., Beer, M., Quek, S.T. and Choo, Y.S. (2010), "Comparison of uncertainty models in reliability analysis of offshore structures under marine corrosion", Struct. Saf., 32(6), 425-432. https://doi.org/10.1016/j.strusafe.2010.04.003.
  45. Zhu, W. and François, R. (2013), "Effect of corrosion pattern on the ductility of tensile reinforcement extracted from a 26-year-old corroded beam", Adv Concrete Constr., 1(2), 121-136. http://dx.doi.org/10.12989/acc.2013.1.2.121.