DOI QR코드

DOI QR Code

용존 6가 우라늄 및 실리카 표면 흡착 6가 우라늄 화학종 분포 연구

Study on the Species Distributions of Dissolved U(VI) and Adsorbed U(VI) on Silica Surface

  • 투고 : 2019.10.28
  • 심사 : 2020.03.06
  • 발행 : 2020.03.30

초록

용존 6가 우라늄은 다양한 화학종으로 존재하며, 화학종의 분포는 수용액의 pH에 의존한다. 산성 및 중성 근처의 pH 환경에서는 대표적으로 UO22+, UO2OH+, (UO2)2(OH)22+, (UO2)3(OH)5+ 화학종이 공존한다. 수용액 속에 비결정성 실리카가 콜로이드 성질의 부유입자 상태로 존재할 때 용존 화학종은 실리카 표면에 쉽게 흡착된다. 이 연구에서는 표면 흡착 화학종의 분포가 용존 화학종의 분포를 따르는지 조사하였다. 시료의 pH 값이 3.5-7.5인 조건에서 3종의 용존 화학종(UO22+, UO2OH+, (UO2)3(OH)5+)과 2종의 표면 흡착 화학종(≡SiO2UO2, ≡SiO2(UO2)OH- 또는 ≡SiO2(UO2)3(OH)5-)의 시간 분해 발광(luminescence) 스펙트럼을 측정하였다. pH 변화에 따른 각 화학종의 스펙트럼 변화 양상을 비교한 결과로 표면 흡착 U(VI) 화학종의 분포는 용존 U(VI) 화학종의 분포와 다르다는 것을 확인하였다.

Dissolved hexavalent uranium can exist in the form of several different chemical species. Furthermore, species distributions depend on the pH value of the aqueous solution. Representatively, UO22+, UO2OH+, (UO2)2(OH)22+, and (UO2)3(OH)5+ species coexist in solutions at acidic and circumneutral pH values. When amorphous silica particles are suspended in an aqueous solution, the dissolved chemical species are easily adsorbed onto silica surfaces. In this study, it was examined whether the species distribution of the adsorbed U(VI) on a silica surface followed that of the dissolved U(VI) in an aqueous solution. Time-resolved luminescence spectra of three different dissolved species (UO22+, UO2OH+, and (UO2)3(OH)5+) and two different adsorbed species (≡SiO2UO2, ≡SiO2(UO2)OH-, or ≡SiO2(UO2)3(OH)5-) were measured in the pH range 3.5-7.5. The spectral shapes of these chemical species were compared by changing the pH value; consequently, it was confirmed that the species distribution of the adsorbed U(VI) species was different from that of the dissolved U(VI) species.

키워드

참고문헌

  1. J.I. Kim, "Significance of Actinide Chemistry for the Long-Term Safety of Waste Disposal", Nucl. Eng. Technol., 38(6), 459-482 (2006).
  2. M. Altmaier, X. Gaona, and T. Fanghanel, "Recent Advances in Aqueous Actinide Chemistry and Thermodynamics", Chem. Rev., 113, 910-943 (2013).
  3. H. Geckeis, J. Lutzenkirchen, R. Polly, T. Rabung, and M. Schmidt, "Mineral-Water Interface Reactions of Actinides", Chem. Rev., 113(2), 1016-1062 (2013). https://doi.org/10.1021/cr300370h
  4. M.H. Baik, T.J. Park, I.Y. Kim, and K.W. Choi, "Research Status and Roles of Natural Analogue Studies in the Radioactive Waste Disposal", J. Nucl. Fuel Cycle Waste Technol., 11(2), 133-156 (2013). https://doi.org/10.7733/jkrws.2013.11.2.133
  5. J.Y. Lee and J.I. Yun, "Temperature-Dependent Hydrolysis Reactions of U(VI) Studies by TRLFS", J. Nucl. Fuel Cycle Waste Technol., 1(1), 65-73 (2013). https://doi.org/10.7733/jnfcwt.2013.1.1.65
  6. C. Moulin, P. Decambox, V. Moulin, and J.G. Decaillon, "Uranium Speciation in Solution by Time-Resolved Laser-Induced Fluorescence", Anal. Chem., 67, 348-353 (1995). https://doi.org/10.1021/ac00098a019
  7. G. Bernhard, G. Geipel, T. Reich, V. Brendler, S. Amayri, and H. Nitsche, "Uranyl(VI) carbonate complex formation: Validation of the $Ca_2UO_2(CO_3)_3(aq.)$ species", Radiochim. Acta, 89, 511-518 (2001). https://doi.org/10.1524/ract.2001.89.8.511
  8. J.Y. Lee and J.I. Yun, "Formation of ternary $ CaUO_2(CO_3){_3}^{2-}$ and $Ca_2UO_2(CO_3)_3(aq)$ complexes under neutral to weakly alkaline conditions", Dalton Trans., 42, 9862-9869 (2013). https://doi.org/10.1039/c3dt50863c
  9. M.H. Baik, E.C. Jung, and J. Jeong, "Determination of uranium concentration and speciation in natural granitic groundwater using TRLFS", J. Radioanal. Nucl. Chem., 305, 589-598 (2015). https://doi.org/10.1007/s10967-015-3971-2
  10. J.K. Lee, M.H. Baik, and J. Jeong, "Development of Sorption Database (KAERI-SDB) for the Safety Assessment of Radioactive Waste Disposal", J. Nucl. Fuel Cycle Waste Technol., 11(1), 41-54 (2013). https://doi.org/10.7733/jkrws.2012.11.1.41
  11. A. Kowal-Fouchard, R. Drot, E. Simoni, and J.J. Ehrhardt, "Use of Spectroscopic Techniques for Uranium(VI)/Montmorillonite Interaction Modelling", Environ. Sci. Technol., 38, 1399-1407 (2004). https://doi.org/10.1021/es0348344
  12. R. Drot, J. Roques, and E. Simoni, "Molecular approach of the uranyl/mineral interaction phenomena", C. R. Chimie, 10, 1078-1091 (2007). https://doi.org/10.1016/j.crci.2007.01.014
  13. J. Wheeler and J.K. Thomas, "Photochemistry of the Uranyl Ion in Colloidal Silica Solution", J. Phys. Chem. 88, 750-754 (1984). https://doi.org/10.1021/j150648a026
  14. H. Moll, G. Geipel, V. Brendler, G. Berhard, and H. Nitsche, "Interaction of uranium(VI) with silicic acid in aqueous solutions studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS)", J. Alloys Compd., 271-273, 765-768 (1998). https://doi.org/10.1016/S0925-8388(98)00203-5
  15. U. Gabriel, L. Charlet, C.W. Schläpfer, J.C. Vial, A. Brachmann, and G. Geipel, "Uranyl Surface Speciation on Silica Particles Studied by Time-Resolved Laser-Induced Fluorescence Spectroscopy", J. Colloid Interface Sci., 239, 358-368 (2001). https://doi.org/10.1006/jcis.2001.7602
  16. C.J. Chisholm-Brause, J.M. Berg, K.M. Little, R.A. Matzner, and D.E. Morris, "Uranyl sorption by smectites: spectroscopic assessment of thermodynamic modelling", J. Colloid Interface Sci., 277, 366-382 (2004). https://doi.org/10.1016/j.jcis.2004.04.047
  17. P. Trepte, V. Brendler, Supporting Information in A. Krepelova, V. Brendler, S. Sachs, N. Baumann, and G. Bernhard, "U(VI)-Kaolinite Surface Complexation in Absence and Presence of Humic Acid Studied by TRLFS", Environ. Sci. Technol., 41, 6142-6147 (2007). https://doi.org/10.1021/es070419q
  18. G. Othmane, T. Allard, T. Vercouter, G. Morin, M. Fayek, and G. Calas, "Luminescence of uranium-bearing opals: Origin and use as a pH record", Chem. Geol., 423, 1-6 (2016). https://doi.org/10.1016/j.chemgeo.2015.12.010
  19. C.J. Chisholm-Brause, J.M. Berg, R.A. Matzner, and D.E. Morris, J. "Uranium(VI) Sorption Complexes on Montmorillonite as a Function of Solution Chemistry", Colloid Interface Sci., 233, 38-49 (2001). https://doi.org/10.1006/jcis.2000.7227
  20. N. Baumann, V. Brendler, T. Arnold, G. Geipel, and G. Bernhard, "Uranyl sorption onto gibbsite studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS)", J. Colloid Interface Sci., 290, 318-324 (2005). https://doi.org/10.1016/j.jcis.2004.10.076
  21. T. Arnold, S. Utsunomiya, G. Geipel, R.C. Ewing, N. Baumann, and V. Brendler, "Adsorbed U(VI) Surface Species on Muscovite Identified by Laser Fluorescence Spectroscopy and Transmission Electron Microscopy", Environ. Sci. Technol., 40, 4646-4652 (2006). https://doi.org/10.1021/es052507l
  22. Z. Wang, J.M. Zachara, P.L. Gassman, C. Liu, O. Qafoku, W. Yantasee, and J.G. Catalano, "Fluorescence spectroscopy of U(VI)-silicates and U(VI)-contaminated Hanford sediment", Geochim. Cosmochim. Acta, 69, 1391-1403 (2005). https://doi.org/10.1016/j.gca.2004.08.028
  23. T. Reich, H. Moll, M.A. Denecke, G. Geipel, G. Bernhard, H. Nitsche, P.G. Allen, J.J. Bucher, N. Kaltsoyannis, N.M. Edelstein, and D.K. Shuh, "Characterization of hydrous uranyl silicate by EXAFS", Radiochim. Acta, 74, 219-223 (1996). https://doi.org/10.1524/ract.1996.74.special-issue.219
  24. T. Reich, H. Moll, T. Arnold, M.A. Denecke, C. Hennig, G. Geipel, G. Bernhard, H. Nitsche, P.G. Allen, J.J. Bucher, N.M. Edelstein, and D.K. Shuh, "An EXAFS study of uranium(VI) sorption onto silica gel and ferrihydrite", J. Electron Spectrosc. Relat. Phenom., 96, 237-243 (1998). https://doi.org/10.1016/S0368-2048(98)00242-4
  25. E.R. Sylwester, E.A. Hudson, and P.G. Allen, "The structure of uranium (VI) sorption complexes on silica, alumina, and montmorillonite", Geochim. Cosmochim. Acta, 64, 2431-2438 (2000). https://doi.org/10.1016/S0016-7037(00)00376-8
  26. M. Walter, T. Arnold, G. Geipel, A. Scheinost, and G. Bernhard, "An EXAFS and TRLFS investigation on uranium(VI) sorption to pristine and leached albite surfaces", J. Colloid Interface Sci., 282, 293-305 (2005). https://doi.org/10.1016/j.jcis.2004.08.133
  27. M.S. Massey, J.S. Lezama-Pacheco, J.M. Nelson, S. Fendorf, and K. Maher, "Uranium Incorporation into Amorphous Silica", Environ. Sci. Technol., 48, 8636-8644 (2014). https://doi.org/10.1021/es501064m
  28. E.C. Jung, M.H. Baik, H.R. Cho, H.K. Kim, and W. Cha, "Study on the Interaction of U(VI) Species With Natural Organic Matters in KURT Groundwater", J. Nucl. Fuel Cycle Waste Technol., 15(2), 101-116 (2017). https://doi.org/10.7733/jnfcwt.2017.15.2.101
  29. R. Guilaumont, T. Fanghänel, V. Neck, J. Fuger, D.A. Palmer, I. Grenthe, and M.H. Rand, "Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium, and Technetium", OECD-NEA, Elsevier (2003).
  30. E.C. Jung, H.R. Cho, H.K. Kim, and W. Cha, "Laser-Based Spectroscopic Studies of Actinide Complexes", in The Heaviest Metals, Science and Technology of the Actinides and Beyond; Edited by W. J. Evans, T. P. Hanusa, published by John Wiley & Sons, Ltd., 209-222 (2019).