DOI QR코드

DOI QR Code

Effect of Coagulants on the Behavior of Ultra Fine Dust in a Coal Firing Boiler

석탄 화력 보일러에서의 응집제 이용에 따른 초미세먼지 거동

  • Ryu, Hwanwoo (Department of Chemical Engineering, Kunsan National University) ;
  • Song, Byungho (Department of Chemical Engineering, Kunsan National University)
  • 류환우 (군산대학교 화학공학과) ;
  • 송병호 (군산대학교 화학공학과)
  • Received : 2019.10.21
  • Accepted : 2020.01.08
  • Published : 2020.02.10

Abstract

Particulate matters of PM2.5, particularly focusing on 0.1~1 ㎛ decrease the efficiency of dust-collector due to the brownian-motion. This study is to verify the effect of coagulant on the particle size distributions of potassium and PM2.5. The activated coagulant was spayed to the coal fired fluidized bed combustion boiler by the weight ratio of 1,200 : 1 = coal : coagulant, and the size distributions of captured particles at both the cyclone (FP) and electrostatic precipitator (EP) were measured. As the result of XRP analysis, the potassium content of FP increased to 13.33% (averagely from 1.65% to 1.87%) and, in EP at 17.68% (averagely from 1.65% to 2.03%). And it was confirmed by the particle size distribution analyzer and SEM image analysis that the distribution rates of PM2.5 decreased at 89.53% on average in FP, and at 88.57% in EP. The total dust concentration (mg/㎥) confirmed by tele-monitering system (TMS) decreased during the primary test from 2.6 to 1.7~1.9 and also the secondary test from 2.9 to 1.7~1.9.

초미세먼지로 분류되는 PM2.5 (particulate matter under 2.5 ㎛) 중에서도 특히 sub-micron 입자(0.1~1.0 ㎛)의 먼지는 브라운 운동(Brownian motion)으로 집진장치의 효율에 한계를 준다. 따라서 수산화나트륨으로 활성화된 알루미늄산나트륨(NaAlO2)을 응집제(coagulant)로 선택하여 석탄을 사용하는 유동층 보일러에서 석탄의 회분에 포함된 칼륨(K)과 PM2.5의 입도분포의 거동과 영향을 확인하고자 했다. 그리고 응집제를 석탄의 무게대비 1,200 : 1 비율로 석탄에 혼합 및 분사하면서 정상 운전하는 중에 보일러의 싸이클론에서의 미세먼지(FP)와 전기집진기에서의 미세먼지(EP)를 포집 및 고찰하였다. 포집한 미세먼지를 입도분석기를 이용하여 입도분포(%)를 분석한 결과 FP에서 평균 4.87%에서 0.51%로 변화를 보임으로써 89.53% 감소하였다. EP에서의 평균 3.46%에서 0.40%로 변화를 보임으로써 88.57% 감소하였다. 포집한 미세먼지를 XRP로 칼륨을 추적한 결과 칼륨의 변화율은 FP에서 평균 1.65%에서 1.87%로 13.33% 증가하고, EP에서 평균 1.65%에서 2.03%로 17.68% 증가하였다. TMS에 의해서 확인된 총 미세먼지 농도(mg/㎥)는 1차는 2.6 mg/㎥에서 1.7~1.9 mg/㎥로 26.9~34.6% 감소하였으며, 2차는 평균 2.9 mg/㎥에서 1.7~1.9 mg/㎥로 33.3~40.4%가 감소하였다. 따라서 본 연구의 응집제가 PM2.5 초미세먼지 입자의 크기와 그로 인한 집진장치효율에 크게 영향을 미치는 것으로 확인하였다.

Keywords

References

  1. H. Yi, X. Guo, J. Hao, L. Duan, and X. Li, Characteristics of inhalable particulate matter concentration and size distribution from power plants in China, J. Air Waste Manage. Assoc., 56(9), 1243-1251 (2006). https://doi.org/10.1080/10473289.2006.10464590
  2. A. S. Damle, D. S. Ensor, and M. B. Ranade, Coal combustion aerosol formation mechanismsw, Sci. Tech., 1(1), 119-133 (1981).
  3. A. M. Jones and R. M. Harrison, Emission of ultrafine particles from the incineration of municipal solid waste, Atmos. Environ., 140, 519-528 (2016). https://doi.org/10.1016/j.atmosenv.2016.06.005
  4. X. Wang, M. Chen, C. Liu, C. Bu, J. Z. C. Zhao, and Y. Huang, Typical gaseous semi-volatile metals adsorption by meta-kaolinite, Int. J. Environ. Res. Public Health., 15(10), 2154 (2018). https://doi.org/10.3390/ijerph15102154
  5. M. Bellotto, A. Gualtieri, G. Artioli, and S. M. Clark, Kinetic study of the kaolinite-mullite reaction sequence. Part I : Kaolinit dehydroxylation, Phys. Chem. Miner., 22(4), 207-217 (1995). https://doi.org/10.1007/BF00202253
  6. R. J. Moolenaar, J. C. Evans, and L. D. McKeever, Structure of the aluminate ion in solutions at high pH, J. Phys. Chem., 74(20), 3629-3636 (1970). https://doi.org/10.1021/j100714a014
  7. K. A. James and P. Shiyou, The crystal structure of hydrated sodium aluminate, $NaAlO_2{\cdot}5/4H_2O$, and Its dehydration product, Solid State Chem., 115(1), 126-139 (1995). https://doi.org/10.1006/jssc.1995.1111
  8. J. S. Lighty, J. M. Veranth, and A. F. Sarofim, Combustion aerosols: Factors governing their size and composition and implications to human health, J. Air Waste Manage. Assoc., 50(9), 1565-1618 (2000). https://doi.org/10.1080/10473289.2000.10464197
  9. Y. Ninomiya, Q. Wang, S. Xu, and K. Mizuno, Effect of additives on the reduction of PM2.5 emissions during pulverized coal combustion, Energy & Fuels, 23(7), 3412-3417 (2009). https://doi.org/10.1021/ef801020r
  10. P. Pintana, and N. Tippayawong, Predicting ash deposit tendency in thermal utilization of biomass, Eng. J., 20(5), 15-24 (2016). https://doi.org/10.4186/ej.2016.20.5.15
  11. S. Liu, H. Yang, Z. Zhang, J. Chen, C. Chen, T. Guo, Y. Cao, and W. Jia, Emission characteristics of fine particles from wet flue gas desulfurization system using a cascade of double towers, Aerosol Air Qual. Res., 18(7), 1901-1909 (2018). https://doi.org/10.4209/aaqr.2017.11.0480
  12. G. Santachiara, F. Prodi, and F. Belosi, A review of termo-and diffusio-phoresis in the atmospheric aerosol scavenging process, Atmos. Climate Sci., 2(2), 148-158 (2012). https://doi.org/10.4236/acs.2012.22016