DOI QR코드

DOI QR Code

Flexural performance of cold-formed square CFST beams strengthened with internal stiffeners

  • Zand, Ahmed W. Al (Smart and Sustainable Township Research Centre, Universiti Kebangsaan Malaysia (UKM)) ;
  • Badaruzzaman, W.H. Wan (Smart and Sustainable Township Research Centre, Universiti Kebangsaan Malaysia (UKM)) ;
  • Ali, Mustafa M. (Smart and Sustainable Township Research Centre, Universiti Kebangsaan Malaysia (UKM)) ;
  • Hasan, Qahtan A. (Smart and Sustainable Township Research Centre, Universiti Kebangsaan Malaysia (UKM)) ;
  • Al-Shaikhli, Marwan S. (Civil Engineering Department, Madenat Alelem University College)
  • Received : 2019.07.29
  • Accepted : 2019.10.21
  • Published : 2020.01.10

Abstract

The tube outward local buckling of Concrete-Filled Steel Tube (CFST) beam under high compression stress is still considered a critical problem, especially for steel tubes with a slender section compared to semi-compact and compact sections. In this study, the flexural performance of stiffened slender cold-formed square tube beams filled with normal concrete was investigated. Fourteen (14) simply supported CFST specimens were tested under static bending loads, stiffened with different shapes and numbers of steel stiffeners that were provided at the inner sides of the tubes. Additional finite element (FE) CFST models were developed to further investigate the influence of using internal stiffeners with varied thickness. The results of tests and FE analyses indicated that the onset of local buckling, that occurs at the top half of the stiffened CFST beam's cross-section at mid-span was substantially restricted to a smaller region. Generally, it was also observed that, due to increased steel area provided by the stiffeners, the bending capacity, flexural stiffness and energy absorption index of the stiffened beams were significantly improved. The average bending capacity and the initial flexural stiffness of the stiffened specimens for the various shapes, single stiffener situations have increased of about 25% and 39%, respectively. These improvements went up to 45% and 60%, for the double stiffeners situations. Moreover, the bending capacity and the flexural stiffness values obtained from the experimental tests and FE analyses validated well with the values computed from equations of the existing standards.

Keywords

Acknowledgement

Supported by : Universiti Kebangsaan Malaysia (UKM)

The authors gratefully acknowledge the financial support for the postdoctoral research provided by Universiti Kebangsaan Malaysia (UKM) with project code No. (MI2018-010).

References

  1. Abdalla, S., Abed, F. and AlHamaydeh, M. (2013), "Behavior of CFSTs and CCFSTs under quasi-static axial compression", J. Constr. Steel Res., 90, 235-244. https://doi.org/10.1016/j.jcsr.2013.08.007
  2. AIJ (1997), Recommendations for Design and Construction of Concrete Filled Steel Tubular Structures, Architectural Institute of Japan (AIJ).
  3. AISC-LRFD (1999), Load and resistance factor design specification for structural steel buildings. Chicago: American Institute of Steel Construction (AISC), Inc.,
  4. AISC (2010), Specification for structural steel buildings. American Institute of Steel Construction (AISC), Chicago, IL;
  5. AL-Shaar, A.A. and Gogus, M.T. (2018), "Performance of retrofitted self-compacting concrete-filled steel tube beams using external steel plates", Adv. Mater. Sci. Eng., 2018, Article ID 3284745, 18 pages. https://doi.org/10.1155/2018/3284745.
  6. Al-Zand, A.W., Hosseinpour, E. and Tawfeeq, W.M. (2017), "The effects of filling the rectangular hollow steel tube beam with concrete: an experimental case study", J. Civil Eng. Researchers. 1(3), 23-30. http://www.journalssearchers.com/ojs/index.php/jcer/article/view/22.
  7. Al Zand, A.W., Badaruzzaman, W.H.W., Mutalib, A.A. and Hilo, S.J. (2016), "The enhanced performance of CFST beams using different strengthening schemes involving unidirectional CFRP sheets: An experimental study", Eng. Struct., 128 184-198. https://doi.org/10.1016/j.engstruct.2016.09.044
  8. Al Zand, A.W., Badaruzzaman, W.H.W., Mutalib, A.A. and Hilo, S.J. (2018), "Flexural behavior of CFST beams partially strengthened with unidirectional CFRP sheets: experimental and theoretical study", J. Compos.Constr., 22(4), 04018018. 10.1061/(ASCE)CC.1943-5614.0000852.
  9. Al Zand, A.W., Hosseinpour, E. and Badaruzzaman, W.H.W. (2018), "The influence of strengthening the hollow steel tube and CFST beams using U-shaped CFRP wrapping scheme", Struct. Eng. Mech., 66(2), 229-235. https://doi.org/10.12989/sem.2018.66.2.229.
  10. AS 4100 (1998), Standards Association of Australia. Steel structures code. Sydney, Australia.
  11. Bahrami, A., Badaruzzaman, W.H.W. and Osman, S.A. (2011), "Nonlinear analysis of concrete-filled steel composite columns subjected axial to loading", Struct. Eng. Mech., 39(3), 383-398. http://dx.doi.org/10.12989/sem.2011.39.3.383.
  12. Bahrami, A., Badaruzzaman, W.H.W. and Osman, S.A. (2012), "Structural behaviour of tapered concrete-filled steel composite (TCFSC) columns subjected to eccentric loading", Comput. Concrete, 9(6), 403-426. http://dx.doi.org/10.12989/cac.2012.9.6.403.
  13. Bahrami, A., Badaruzzaman, W.H.W. and Osman, S.A. (2013), "Behaviour of stiffened concrete-filled steel composite (CFSC) stub columns", Latin Am. J. Solids Struct., 10(2), 409-440. http://dx.doi.org/10.1590/S1679-78252013000200009.
  14. Bahrami, A., Badaruzzaman, W.H.W. and Osman, S.A., (2014). "Numerical study of concrete-filled steel composite (CFSC) stub columns with steel stiffeners". Latin Am. J. Solids Struct., 11(4), 683-703. http://dx.doi.org/10.1590/S1679-78252014000400008.
  15. BS5400 (2005), Steel, Concrete and Composite Bridges. Part 5: code of practice for the design of composite bridges. British Standards Institution, London (UK).
  16. Chen, J. and Jin, W.l. (2010), "Experimental investigation of thinwalled complex section concrete-filled steel stub columns", Thin-Wall. Struct., 48(9), 718-724. https://doi.org/10.1016/j.tws.2010.05.001.
  17. Chen, J., Liu, X., Liu, H. and Zeng, L. (2018), "Axial compression behavior of circular recycled concrete-filled steel tubular short columns reinforced by silica fume and steel fiber", Steel Compos. Struct., 27(2), 193-200. http://dx.doi.org/10.12989/scs.2018.27.2.193.
  18. EC4 (2004), European Committee for Standardization. Design of Composite Steel and Concrete Structures - Part 1.1: General rules and rules for buildings, European Committee for Standardization (Eurocode 4), Brussels; Belgium.
  19. EC3 (2002), European Committee for Standardization. Design of Steel Structures- Part 1.1, General rules and rules for buildings. European Committee for Standardization (Eurocode 3), Brussels; Belgium.
  20. Ekmekyapar, T. and Al-Eliwi, B.J. (2017), "Concrete filled double circular steel tube (CFDCST) stub columns", Eng. Struct., 135 68-80. https://doi.org/10.1016/j.engstruct.2016.12.061.
  21. Hosseinpour, E., Baharom, S., Badaruzzaman, W.H.W., Shariati, M. and Jalali, A., (2018). "Direct shear behavior of concrete filled hollow steel tube shear connector for slim-floor steel beams", Steel Compos. Struct., 26(4), 485-499. https://doi.org/10.12989/scs.2018.26.4.485
  22. Guler, S., Copur, A. and Aydogan, M. (2012), "Flexural behaviour of square UHPC-filled hollow steel section beams", Struct. Eng. Mech., 43(2), 225-237. http://dx.doi.org/10.12989/sem.2012.43.2.225.
  23. Han, L.H., Zhao, X.L. and Tao, Z. (2001), "Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns", Steel Compos. Struct., 1(1), 51-74. http://dx.doi.org/10.12989/scs.2001.1.1.051.
  24. Han, L.H. (2004), "Flexural behaviour of concrete-filled steel tubes", J. Constr. Steel Res., 60(2), 313-337. https://doi.org/10.1016/j.jcsr.2003.08.009.
  25. Han, L.H., Huang, H., Tao, Z. and Zhao, X.L. (2006a), "Concretefilled double skin steel tubular (CFDST) beam-columns subjected to cyclic bending", Eng. Struct., 28(12), 1698-1714. https://doi.org/10.1016/j.engstruct.2006.03.004.
  26. Han, L.H., Lu, H., Yao, G.H. and Liao, F.Y. (2006b), "Further study on the flexural behaviour of concrete-filled steel tubes", J. Constr. Steel Res., 62(6), 554-565. https://doi.org/10.1016/j.jcsr.2005.09.002.
  27. Han, L.H., Li, W. and Bjorhovde, R. (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members", J. Constr. Steel Res., 100, 211-228. https://doi.org/10.1016/j.jcsr.2014.04.016.
  28. Hassan, M.M., Mahmoud, A.A. and Serror, M.H. (2016), "Behavior of concrete-filled double skin steel tube beamcolumns", Steel Compos. Struct., 22(5), 1141-1162. http://dx.doi.org/10.12989/scs.2016.22.5.1141.
  29. Helena, H.J. and Knight, G. (2005), "Behaviour of cold-formed steel hollow and concrete-filled members", Steel Compos. Struct., 5(1), 35-47. http://dx.doi.org/10.12989/scs.2005.5.1.035.
  30. Hilo, S.J., Badaruzzaman, W.H.W., Osman, S.A. and Al Zand, A.W. (2015), "Axial load behavior of acomposite wall strengthened with an embedded octagon cold-formed steel", Appl. Mech. Mater., 754 437-441. https://doi.org/10.4028/www.scientific.net/AMM.754-755.437.
  31. Huang, C., Yeh, Y.K., Liu, G.Y., Hu, H.T., Tsai, K., Weng, Y., Wang, S. and Wu, M.H. (2002), "Axial load behavior of stiffened concrete-filled steel columns", J. Struct. Eng., 128(9), 1222-1230. 10.1061/-ASCE!0733-9445-2002!128:9-1222!.
  32. Javed, M.F., Sulong, N.R., Memon, S.A., Rehman, S.K.U. and Khan, N.B. (2018), "Flexural behaviour of steel hollow sections filled with concrete that contains OPBC as coarse aggregate", J. Constr. Steel Res., 148, 287-294. https://doi.org/10.1016/j.jcsr.2018.05.035.
  33. Javed, M.F., Sulong, N.R., Memon, S.A., Rehman, S.K.U. and Khan, N.B. (2017), "FE modelling of the flexural behaviour of square and rectangular steel tubes filled with normal and high strength concrete", Thin-Wall. Struct., 119, 470-481. https://doi.org/10.1016/j.tws.2017.06.025.
  34. Jiang, A.Y., Chen, J. and Jin, W.l. (2013), "Experimental investigation and design of thin-walled concrete-filled steel tubes subject to bending", Thin-Wall. Struct., 63, 44-50. https://doi.org/10.1016/j.tws.2012.10.008
  35. Kang, J.Y., Choi, E.S., Chin, W.J. and Lee, J.W. (2007), "Flexural behavior of concrete-filled steel tube members and its application", Int. J. Steel Struct., 7(4), 319-324.
  36. Lee, S., Kim, S., Bang, J., Won, Y. and Choi, S. (2011), "Structural characteristics of welded built-up square concrete filled tubular stub columns associated with concrete strength", Procedia Eng., 14, 1140-1148. https://doi.org/10.1016/j.proeng.2011.07.143.
  37. Liang, W., Dong, J. and Wang, Q. (2018), "Axial compressive behavior of concrete-filled steel tube columns with stiffeners", Steel Compos. Struct., 29(2), 151-159. http://dx.doi.org/10.12989/scs.2018.29.2.151.
  38. Ling, Y., Feng, W., Zhao, J. and Li, Y. (2014), "Study on the ultimate bearing capacity of concrete filled steel square tubular short column with PBL", Adv. Mater. Res., 941-944, 770-775. https://doi.org/10.4028/www.scientific.net/AMR.941-944.770.
  39. Lu, Y., Liu, Z., Li, S. and Hu, J. (2018), "Axial compression behavior of hybrid fiber reinforced concrete filled steel tube stub column", Constr. Build. Mater., 174, 96-107. https://doi.org/10.1016/j.conbuildmat.2018.04.089.
  40. Lu, Y., Liu, Z., Li, S. and Li, N. (2018), "Bond behavior of steel fibers reinforced self-stressing and self-compacting concrete filled steel tube columns", Constr. Build. Mater., 158, 894-909. https://doi.org/10.1016/j.conbuildmat.2017.10.085.
  41. Lu, Y., Liu, Z., Li, S. and Li, W. (2017), "Behavior of steel fibers reinforced self-stressing and self-compacting concrete-filled steel tube subjected to bending", Constr. Build. Mater., 156 639-651. https://doi.org/10.1016/j.conbuildmat.2017.09.019.
  42. Qian, J., Zhang, Y., Ji, X. and Cao, W. (2011), "Test and analysis of axial compressive behavior of short composite-sectioned high strength concrete filled steel tubular columns", Jianzhu Jiegou Xuebao (Journal of Building Structures). 32(12), 162-169. http://en.cnki.com.cn/Article_en/CJFDTotal-JZJB201112019.htm.
  43. Moon, J., Roeder, C.W., Lehman, D.E. and Lee, H.E. (2012), "Analytical modeling of bending of circular concrete-filled steel tubes", Eng. Struct., 42: 349-361. https://doi.org/10.1016/j.engstruct.2012.04.028.
  44. Song, Y., Li, J. and Chen, Y. (2019), "Local and post-local buckling of normal/high strength steel sections with concrete infill", Thin-Wall. Struct., 138, 155-169. https://doi.org/10.1016/j.tws.2019.02.004.
  45. Sundarraja, M.C. and Prabhu, G.G. (2013), "Flexural behaviour of CFST members strengthened using CFRP composites", Steel Compos. Struct., 15(6), 623-643. http://dx.doi.org/10.12989/scs.2013.15.6.623.
  46. Tao, Z., Han, L.H. and Wang, D.Y., (2007). "Experimental behaviour of concrete-filled stiffened thin-walled steel tubular columns", Thin-Wall. Struct., 45(5), 517-527. https://doi.org/10.1016/j.tws.2007.04.003.
  47. Wang, R., Han, L.H., Nie, J. G. and Zhao, X.L. (2014), "Flexural performance of rectangular CFST members", Thin-Walled Struct., 79, 154-165. https://doi.org/10.1016/j.tws.2014.02.015.
  48. Wang, W.H., Han, L.H., Li, W. and Jia, Y.H. (2014), "Behavior of concrete-filled steel tubular stub columns and beams using dune sand as part of fine aggregate", Constr. Build. Mater., 51, 352-363. https://doi.org/10.1016/j.conbuildmat.2013.10.049.
  49. Yang, Y.F. and Han, L.H. (2006), "Compressive and flexural behaviour of recycled aggregate concrete filled steel tubes (RACFST) under short-term loadings", Steel Compos. Struct., 6(3), 257-284. http://dx.doi.org/10.12989/scs.2006.6.3.257.
  50. Yang, Y.F. and Ma, G.L. (2013), "Experimental behaviour of recycled aggregate concrete filled stainless steel tube stub columns and beams", Thin-Wall. Struct., 66, 62-75. https://doi.org/10.1016/j.tws.2013.01.017.
  51. Yuan, F., Huang, H. and Chen, M., (2019). "Effect of stiffeners on the eccentric compression behaviour of square concrete-filled steel tubular columns", Thin-Wall. Struct., 135, 196-209. https://doi.org/10.1016/j.tws.2018.11.015.
  52. Yang, Y.F. (2015), "Modelling of recycled aggregate concretefilled steel tube (RACFST) beam-columns subjected to cyclic loading", Steel Compos. Struct., 18(1), 213-233. https://doi.org/10.12989/scs.2015.18.1.213.
  53. Zhang, Y.B., Han, L.H., Zhou, K. and Yang, S. (2019), "Mechanical performance of hexagonal multi-cell concretefilled steel tubular (CFST) stub columns under axial compression", Thin-Wall. Struct., 134, 71-83. https://doi.org/10.1016/j.tws.2018.09.027.
  54. Zhao, X.L. and Jaspart, J.P., (2005), "Width-to-thickness ratios for classification of tubular sections", Proceedings of the 2005 Eurosteel Conference on Steel and Composite Structures (Volume-A), 183 -190
  55. Zhu, A., Zhang, X., Zhu, H., Zhu, J. and Lu, Y. (2017), "Experimental study of concrete filled cold-formed steel tubular stub columns", J. Constr. Steel Res., 134, 17-27. https://doi.org/10.1016/j.jcsr.2017.03.003.

Cited by

  1. Hysteretic characteristics of steel plate shear walls: Effects of openings vol.76, pp.6, 2020, https://doi.org/10.12989/sem.2020.76.6.687
  2. Analytical behavior of built-up square concrete-filled steel tubular columns under combined preload and axial compression vol.38, pp.6, 2020, https://doi.org/10.12989/scs.2021.38.6.617