DOI QR코드

DOI QR Code

라즈베리파이를 이용한 Modbus TCP 기반 태양광 발전소 모니터링 시스템

Modbus TCP based Solar Power Plant Monitoring System using Raspberry Pi

  • 박진환 (가천대학교 에너지IT학과) ;
  • 김창복 (가천대학교 에너지IT학과)
  • 투고 : 2020.11.12
  • 심사 : 2020.12.21
  • 발행 : 2020.12.30

초록

본 연구는 IOT 장비인 라즈베리파이를 마스터(master)로 이용하고 인버터를 슬레이브(slave)로 하여 모드버스 TCP 통신을 기반한 태양광 발전 모니터링 시스템을 제안하였다. 본 모델은 라즈베리파이에 다양한 센서를 추가하여 태양광 발전소의 모니터링에 필요한 정보를 추가하였으며, 실시간 발전량 예측을 통해 발전량 예측과 모니터링 정보를 스마트 폰으로 송신하였다. 또한, 서버에 태양광 발전소에서 지속해서 생성되는 정보를 빅데이터로 구축하였으며, 발전량 예측을 위한 딥러닝 모델을 학습하여 갱신하였다. 연구 결과로서 인버터에서 라즈베리파이로 모드버스 TCP 기반으로 안정적인 통신이 가능하였고, 라즈베리파이에서 학습된 딥러닝 모델로 실시간 예측이 가능하였다. 서버는 빅데이터로 다양한 딥러닝 모델 학습이 가능하였으며, LSTM이 학습 오차 0.0069, 테스트 오차 0.0075, RMSE 0.0866 등으로 가장 좋은 오차를 보임을 확인하였다. 본 모델은 다양한 제조사의 인버터에 대해서 보다 간단하고 편리하며 발전량을 예측할 수 있는 실시간 모니터링 시스템 구현이 가능함을 제시하였다.

This research propose and simulate a solar power generation system monitoring system based on Modbus TCP communication using RaspberryPi, an IOT equipment, as a master and an inverter as a slave. In this model, various sensors are added to the RaspberryPi to add necessary information for monitoring solar power plants, and power generation prediction and monitoring information are transmitted to the smart phone through real-time power generation prediction. In addition, information that is continuously generated by the solar power plant is built on the server as big data, and a deep learning model for predicting power generation is trained and updated. As a result of the study, stable communication was possible based on Modbus TCP with the Raspberry Pi in the inverter, and real-time prediction was possible with the deep learning model learned in the Raspberry Pi. The server was able to train various deep learning models with big data, and it was confirmed that LSTM showed the best error with a learning error of 0.0069, a test error of 0.0075, and an RMSE of 0.0866. This model suggested that it is possible to implement a real-time monitoring system that is simpler, more convenient, and can predict the amount of power generation for inverters of various manufacturers.

키워드

참고문헌

  1. S. Y. Kang, and I. W. Lee, "Implementation of PV monitoring system using python," in 2019 21st International Conference on Advanced Communication Technology, PyeongChang: Korea, pp. 453-455, 2019.
  2. J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, "Internet of things (IoT): a vision, architectural elements, and future directions," Future Generation Computer Systems, Vol. 29, No. 7, pp. 1645-1660, 2013. https://doi.org/10.1016/j.future.2013.01.010
  3. L. In, and K. C. Lee, "The internet of things : applications, investments, and challenges for enterprises," Business Horizons, Vol. 58, No. 4, pp. 431-440, 2015. https://doi.org/10.1016/j.bushor.2015.03.008
  4. J. S. Jeong, and S. B. Lee, "Design and implementation of wireless lighting LED controller using modbus TCP for a ship," Korean Institute of Navigation and Port Research, Vol. 41, No. 6, pp. 395 - 400, 2017.
  5. T. Y. Kim, and H. S. Kim, "A study on status monitoring and control of wind power based on modbus TCP protocol," in Proceeding of The Korean Institute of Information Scientists and Engineers, Busan: Korea, pp. 1,122 - 1,123, 2014.
  6. Q. Liu, and Y. Li, "Modbus/tcp based network control system for water process in the firepower plant," in 2006 6th World Congress on Intelligent Control and Automation, Vol. 1, IEEE, Dalian: China, pp. 432-435, 2006.
  7. X. He, E. Robards, R. Gamble, and M. Papa, "Anomaly detection sensors for a modbus-based oil and gas well-monitoring system," in 2019 2nd International Conference on Data Intelligence and Security, IEEE, South Padres: Island, pp. 1-8, 2019.
  8. S. D. Anto, S. Kanoor, D. Fraunholz, and H. D. Schotten, "Evaluation of machine learning-based anomaly detection algorithms on an industrial modbus/tcp data set," in Proceedings of the 13th International Conference on Availability, Reliability and Security, Hamburg: Germany, pp. 1-9, 2018
  9. [Internet]. Available: https://Firebase.google.com.