DOI QR코드

DOI QR Code

Prebiotics in the Infant Microbiome: The Past, Present, and Future

  • Received : 2019.12.03
  • Accepted : 2019.12.23
  • Published : 2020.01.15

Abstract

The latest definition of a prebiotic is "a substrate that is selectively utilized by host microorganisms conferring a health benefit"; it now includes non-food elements and is applicable to extra-intestinal tissues. Prebiotics are recognized as a promising tool in the promotion of general health and in the prevention and treatment of numerous juvenile diseases. Prebiotics are considered an immunoactive agent, with the potential for long-lasting effects extending past active administration of the prebiotic. Because of its extremely low risk of serious adverse effects, ease of administration, and strong potential for influencing the composition and function of the microbiota in the gut and beyond, the beneficial clinical applications of prebiotics are expanding. Prebiotics are the third largest component of human breast milk. Preparations including galactooligosaccharides (GOS), fructooligosaccharides (FOS), 2'-fucosyllactose, lacto-N-neo-tetraose are examples of commonly used and studied products for supplementation in baby formula. In particular, the GOS/FOS combination is the most studied. Maintaining a healthy microbiome is essential to promote homeostasis of the gut and other organs. With more than 1,000 different microbial species in the gut, it is likely more feasible to modify the gut microbiota through the use of certain prebiotic mixtures rather than supplementing with a particular probiotic strain. In this review, we discuss the latest clinical evidence regarding prebiotics and its role in gut immunity, allergy, infections, inflammation, and functional gastrointestinal disorders.

Keywords

References

  1. Weiner HL. Oral tolerance, an active immunologic process mediated by multiple mechanisms. J Clin Invest 2000;106:935-7. https://doi.org/10.1172/JCI11348
  2. Faria AM, Weiner HL. Oral tolerance. Immunol Rev 2005;206:232-59. https://doi.org/10.1111/j.0105-2896.2005.00280.x
  3. Vighi G, Marcucci F, Sensi L, Di Cara G, Frati F. Allergy and the gastrointestinal system. Clin Exp Immunol 2008;153 Suppl 1:3-6. https://doi.org/10.1111/j.1365-2249.2008.03713.x
  4. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006;444:1027-31. https://doi.org/10.1038/nature05414
  5. Tilg H, Kaser A. Gut microbiome, obesity, and metabolic dysfunction. J Clin Invest 2011;121:2126-32. https://doi.org/10.1172/JCI58109
  6. Manichanh C, Borruel N, Casellas F, Guarner F. The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol 2012;9:599-608. https://doi.org/10.1038/nrgastro.2012.152
  7. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006;124:837-48. https://doi.org/10.1016/j.cell.2006.02.017
  8. Iebba V, Totino V, Gagliardi A, Santangelo F, Cacciotti F, Trancassini M, et al. Eubiosis and dysbiosis: the two sides of the microbiota. New Microbiol 2016;39:1-12.
  9. Hansen R, Scott KP, Khan S, Martin JC, Berry SH, Stevenson M, et al. First-pass meconium samples from healthy term vaginally-delivered neonates: an analysis of the microbiota. PLoS One 2015;10:e0133320. https://doi.org/10.1371/journal.pone.0133320
  10. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med 2014;6:237ra65. https://doi.org/10.1126/scitranslmed.3008599
  11. Perez-Munoz ME, Arrieta MC, Ramer-Tait AE, Walter J. A critical assessment of the "sterile womb" and "in utero colonization" hypotheses: implications for research on the pioneer infant microbiome. Microbiome 2017;5:48. https://doi.org/10.1186/s40168-017-0268-4
  12. Adlerberth I, Wold AE. Establishment of the gut microbiota in Western infants. Acta Paediatr 2009;98:229-38. https://doi.org/10.1111/j.1651-2227.2008.01060.x
  13. Biasucci G, Benenati B, Morelli L, Bessi E, Boehm G. Cesarean delivery may affect the early biodiversity of intestinal bacteria. J Nutr 2008;138:1796S-800S. https://doi.org/10.1093/jn/138.9.1796S
  14. Gronlund MM, Lehtonen OP, Eerola E, Kero P. Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J Pediatr Gastroenterol Nutr 1999;28:19-25. https://doi.org/10.1097/00005176-199901000-00007
  15. Huurre A, Kalliomaki M, Rautava S, Rinne M, Salminen S, Isolauri E. Mode of delivery - effects on gut microbiota and humoral immunity. Neonatology 2008;93:236-40. https://doi.org/10.1159/000111102
  16. Mackie RI, Sghir A, Gaskins HR. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr 1999;69:1035S-45S. https://doi.org/10.1093/ajcn/69.5.1035s
  17. Benno Y, Sawada K, Mitsuoka T. The intestinal microflora of infants: composition of fecal flora in breast-fed and bottle-fed infants. Microbiol Immunol 1984;28:975-86. https://doi.org/10.1111/j.1348-0421.1984.tb00754.x
  18. Penders J, Stobberingh EE, Thijs C, Adams H, Vink C, van Ree R, et al. Molecular fingerprinting of the intestinal microbiota of infants in whom atopic eczema was or was not developing. Clin Exp Allergy 2006;36:1602-8. https://doi.org/10.1111/j.1365-2222.2006.02599.x
  19. Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, et al. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 2000;30:61-7. https://doi.org/10.1097/00005176-200001000-00019
  20. Favier CF, Vaughan EE, De Vos WM, Akkermans AD. Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol 2002;68:219-26. https://doi.org/10.1128/AEM.68.1.219-226.2002
  21. Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 2006;118:511-21. https://doi.org/10.1542/peds.2005-2824
  22. Li M, Wang M, Donovan SM. Early development of the gut microbiome and immune-mediated childhood disorders. Semin Reprod Med 2014;32:74-86. https://doi.org/10.1055/s-0033-1361825
  23. Coppa GV, Zampini L, Galeazzi T, Gabrielli O. Prebiotics in human milk: a review. Dig Liver Dis 2006;38 Suppl 2:S291-4. https://doi.org/10.1016/S1590-8658(07)60013-9
  24. Kunz C, Rudloff S, Baier W, Klein N, Strobel S. Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu Rev Nutr 2000;20:699-722. https://doi.org/10.1146/annurev.nutr.20.1.699
  25. Bode L. The functional biology of human milk oligosaccharides. Early Hum Dev 2015;91:619-22. https://doi.org/10.1016/j.earlhumdev.2015.09.001
  26. McGuire MK, Meehan CL, McGuire MA, Williams JE, Foster J, Sellen DW, et al. What's normal? Oligosaccharide concentrations and profiles in milk produced by healthy women vary geographically. Am J Clin Nutr 2017;105:1086-100. https://doi.org/10.3945/ajcn.116.139980
  27. Garrido D, Kim JH, German JB, Raybould HE, Mills DA. Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans. PLoS One 2011;6:e17315. https://doi.org/10.1371/journal.pone.0017315
  28. Miliku K, Robertson B, Sharma AK, Subbarao P, Becker AB, Mandhane PJ, ; CHILD Study Investigators, Bode L, Azad MB, et al.. Human milk oligosaccharide profiles and food sensitization among infants in the CHILD Study. Allergy 2018;73:2070-3. https://doi.org/10.1111/all.13476
  29. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, et al. Prebiotic effects: metabolic and health benefits. Br J Nutr 2010;104 Suppl 2:S1-63.
  30. Stewart ML, Timm DA, Slavin JL. Fructooligosaccharides exhibit more rapid fermentation than long-chain inulin in an in vitro fermentation system. Nutr Res 2008;28:329-34. https://doi.org/10.1016/j.nutres.2008.02.014
  31. Rastall RA, Gibson GR. Recent developments in prebiotics to selectively impact beneficial microbes and promote intestinal health. Curr Opin Biotechnol 2015;32:42-6. https://doi.org/10.1016/j.copbio.2014.11.002
  32. Moro G, Boehm G. Clinical outcomes of prebiotic intervention trials during infancy: a review. Functional Food Rev 2012;4:101-13.
  33. Newburg DS. Oligosaccharides in human milk and bacterial colonization. J Pediatr Gastroenterol Nutr 2000;30 Suppl 2:S8-17. https://doi.org/10.1097/00005176-200003002-00003
  34. Braegger C, Chmielewska A, Decsi T, Kolacek S, Mihatsch W, Moreno L, et al.; ESPGHAN Committee on Nutrition. Supplementation of infant formula with probiotics and/or prebiotics: a systematic review and comment by the ESPGHAN committee on nutrition. J Pediatr Gastroenterol Nutr 2011;52:238-50. https://doi.org/10.1097/MPG.0b013e3181fb9e80
  35. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 1995;125:1401-12. https://doi.org/10.1093/jn/125.6.1401
  36. Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 2004;17:259-75. https://doi.org/10.1079/NRR200479
  37. Gibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A, Dubert-Ferrandon A, et al. Dietary prebiotics: current status and new definition. Food Sci Tech Bull Funct Food 2010;7:1-19. https://doi.org/10.1616/1476-2137.15880
  38. Bindels LB, Delzenne NM, Cani PD, Walter J. Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol 2015;12:303-10. https://doi.org/10.1038/nrgastro.2015.47
  39. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 2017;14:491-502. https://doi.org/10.1038/nrgastro.2017.75
  40. Parnell JA, Reimer RA. Prebiotic fibres dose-dependently increase satiety hormones and alter Bacteroidetes and Firmicutes in lean and obese JCR:LA-cp rats. Br J Nutr 2012;107:601-13. https://doi.org/10.1017/S0007114511003163
  41. Wasilewski A, Zielinska M, Storr M, Fichna J. Beneficial effects of probiotics, prebiotics, synbiotics, and psychobiotics in inflammatory bowel disease. Inflamm Bowel Dis 2015;21:1674-82. https://doi.org/10.1097/MIB.0000000000000364
  42. Jakobsdottir G, Nyman M, Fak F. Designing future prebiotic fiber to target metabolic syndrome. Nutrition 2014;30:497-502. https://doi.org/10.1016/j.nut.2013.08.013
  43. Barcelo A, Claustre J, Moro F, Chayvialle JA, Cuber JC, Plaisancie P. Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon. Gut 2000;46:218-24. https://doi.org/10.1136/gut.46.2.218
  44. Gibson GR, McCartney AL, Rastall RA. Prebiotics and resistance to gastrointestinal infections. Br J Nutr 2005;93 Suppl 1:S31-4. https://doi.org/10.1079/BJN20041343
  45. Shoaf K, Mulvey GL, Armstrong GD, Hutkins RW. Prebiotic galactooligosaccharides reduce adherence of enteropathogenic Escherichia coli to tissue culture cells. Infect Immun 2006;74:6920-8. https://doi.org/10.1128/IAI.01030-06
  46. Shokryazdan P, Faseleh Jahromi M, Navidshad B, Liang JB. Effects of prebiotics on immune system and cytokine expression. Med Microbiol Immunol 2017;206:1-9. https://doi.org/10.1007/s00430-016-0481-y
  47. Klampfer L, Huang J, Sasazuki T, Shirasawa S, Augenlicht L. Inhibition of interferon gamma signaling by the short chain fatty acid butyrate. Mol Cancer Res 2003;1:855-62.
  48. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009;461:1282-6. https://doi.org/10.1038/nature08530
  49. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013;341:569-73. https://doi.org/10.1126/science.1241165
  50. Fukushima Y, Kawata Y, Hara H, Terada A, Mitsuoka T. Effect of a probiotic formula on intestinal immunoglobulin A production in healthy children. Int J Food Microbiol 1998;42:39-44. https://doi.org/10.1016/S0168-1605(98)00056-7
  51. Yasui H, Mike A, Ohwaki M. Immunogenicity of Bifidobacterium breve and change in antibody production in Peyer's patches after oral administration. J Dairy Sci 1989;72:30-5. https://doi.org/10.3168/jds.s0022-0302(89)79076-7
  52. Raes M, Scholtens PA, Alliet P, Hensen K, Jongen H, Boehm G, et al. Exploration of basal immune parameters in healthy infants receiving an infant milk formula supplemented with prebiotics. Pediatr Allergy Immunol 2010;21(2 Pt 2):e377-85. https://doi.org/10.1111/j.1399-3038.2009.00957.x
  53. Ben XM, Zhou XY, Zhao WH, Yu WL, Pan W, Zhang WL, et al. Supplementation of milk formula with galacto-oligosaccharides improves intestinal micro-flora and fermentation in term infants. Chin Med J (Engl) 2004;117:927-31.
  54. Muir AB, Benitez AJ, Dods K, Spergel JM, Fillon SA. Microbiome and its impact on gastrointestinal atopy. Allergy 2016;71:1256-63. https://doi.org/10.1111/all.12943
  55. Aitoro R, Paparo L, Amoroso A, Di Costanzo M, Cosenza L, Granata V, et al. Gut microbiota as a target for preventive and therapeutic intervention against food allergy. Nutrients 2017;9:E672.
  56. West CE, Renz H, Jenmalm MC, Kozyrskyj AL, Allen KJ, Vuillermin P, et al.; in-FLAME Microbiome Interest Group. The gut microbiota and inflammatory noncommunicable diseases: associations and potentials for gut microbiota therapies. J Allergy Clin Immunol 2015;135:3-13; quiz 14. https://doi.org/10.1016/j.jaci.2014.11.012
  57. Kalliomaki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol 2001;107:129-34. https://doi.org/10.1067/mai.2001.111237
  58. Stiemsma LT, Michels KB. The role of the microbiome in the developmental origins of health and disease. Pediatrics 2018;141:e20172437. https://doi.org/10.1542/peds.2017-2437
  59. Tang ML, Lahtinen SJ, Boyle RJ. Probiotics and prebiotics: clinical effects in allergic disease. Curr Opin Pediatr 2010;22:626-34. https://doi.org/10.1097/mop.0b013e32833d9728
  60. Shibata R, Kimura M, Takahashi H, Mikami K, Aiba Y, Takeda H, et al. Clinical effects of kestose, a prebiotic oligosaccharide, on the treatment of atopic dermatitis in infants. Clin Exp Allergy 2009;39:1397-403. https://doi.org/10.1111/j.1365-2222.2009.03295.x
  61. Cuello-Garcia CA, Fiocchi A, Pawankar R, Yepes-Nunez JJ, Morgano GP, Zhang Y, et al. World Allergy Organization-Mcmaster University guidelines for allergic disease prevention (GLAD-P): prebiotics. World Allergy Organ J 2016;9:10. https://doi.org/10.1186/s40413-016-0102-7
  62. Arslanoglu S, Moro GE, Schmitt J, Tandoi L, Rizzardi S, Boehm G. Early dietary intervention with a mixture of prebiotic oligosaccharides reduces the incidence of allergic manifestations and infections during the first two years of life. J Nutr 2008;138:1091-5. https://doi.org/10.1093/jn/138.6.1091
  63. Osborn DA, Sinn JK. Prebiotics in infants for prevention of allergy. Cochrane Database Syst Rev 2013;(3):CD006474.
  64. Knol J, Scholtens P, Kafka C, Steenbakkers J, Gro S, Helm K, et al. Colon microflora in infants fed formula with galacto- and fructo-oligosaccharides: more like breast-fed infants. J Pediatr Gastroenterol Nutr 2005;40:36-42. https://doi.org/10.1097/00005176-200501000-00007
  65. Boehm G, Jelinek J, Stahl B, van Laere K, Knol J, Fanaro S, et al. Prebiotics in infant formulas. J Clin Gastroenterol 2004;38(6 Suppl):S76-9. https://doi.org/10.1097/01.mcg.0000128927.91414.93
  66. Boehm G, Lidestri M, Casetta P, Jelinek J, Negretti F, Stahl B, et al. Supplementation of a bovine milk formula with an oligosaccharide mixture increases counts of faecal bifidobacteria in preterm infants. Arch Dis Child Fetal Neonatal Ed 2002;86:F178-81. https://doi.org/10.1136/fn.86.3.F178
  67. Moro G, Minoli I, Mosca M, Fanaro S, Jelinek J, Stahl B, et al. Dosage-related bifidogenic effects of galacto- and fructooligosaccharides in formula-fed term infants. J Pediatr Gastroenterol Nutr 2002;34:291-5. https://doi.org/10.1097/00005176-200203000-00014
  68. Moreno Villares JM. [Probiotics in infant formulae. Could we modify the immune response?]. An Pediatr (Barc) 2008;68:286-94 Spanish. https://doi.org/10.1157/13116712
  69. Arslanoglu S, Moro GE, Boehm G. Early supplementation of prebiotic oligosaccharides protects formula-fed infants against infections during the first 6 months of life. J Nutr 2007;137:2420-4. https://doi.org/10.1093/jn/137.11.2420
  70. Gibson GR. Dietary modulation of the human gut microflora using the prebiotics oligofructose and inulin. J Nutr 1999;129(7 Suppl):1438S-41S. https://doi.org/10.1093/jn/129.7.1438S
  71. Sartor RB. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology 2004;126:1620-33. https://doi.org/10.1053/j.gastro.2004.03.024
  72. Looijer-van Langen MA, Dieleman LA. Prebiotics in chronic intestinal inflammation. Inflamm Bowel Dis 2009;15:454-62. https://doi.org/10.1002/ibd.20737
  73. de Weerth C, Fuentes S, Puylaert P, de Vos WM. Intestinal microbiota of infants with colic: development and specific signatures. Pediatrics 2013;131:e550-8. https://doi.org/10.1542/peds.2012-1449
  74. Dubois NE, Gregory KE. Characterizing the intestinal microbiome in infantile colic: findings based on an integrative review of the literature. Biol Res Nurs 2016;18:307-15. https://doi.org/10.1177/1099800415620840
  75. Savino F, Cresi F, Maccario S, Cavallo F, Dalmasso P, Fanaro S, et al. "Minor" feeding problems during the first months of life: effect of a partially hydrolysed milk formula containing fructo- and galacto-oligosaccharides. Acta Paediatr Suppl 2003;91:86-90.
  76. Sherman PM, Cabana M, Gibson GR, Koletzko BV, Neu J, Veereman-Wauters G, et al. Potential roles and clinical utility of prebiotics in newborns, infants, and children: proceedings from a global prebiotic summit meeting, New York City, June 27-28, 2008. J Pediatr 2009;155:S61-70. https://doi.org/10.1016/j.jpeds.2009.08.022
  77. Schmelzle H, Wirth S, Skopnik H, Radke M, Knol J, Bockler HM, et al. Randomized double-blind study of the nutritional efficacy and bifidogenicity of a new infant formula containing partially hydrolyzed protein, a high beta-palmitic acid level, and nondigestible oligosaccharides. J Pediatr Gastroenterol Nutr 2003;36:343-51. https://doi.org/10.1097/00005176-200303000-00008
  78. Closa-Monasterolo R, Ferre N, Castillejo-DeVillasante G, Luque V, Gispert-Llaurado M, Zaragoza-Jordana M, et al. The use of inulin-type fructans improves stool consistency in constipated children. A randomised clinical trial: pilot study. Int J Food Sci Nutr 2017;68:587-94. https://doi.org/10.1080/09637486.2016.1263605
  79. Ziegler E, Vanderhoof JA, Petschow B, Mitmesser SH, Stolz SI, Harris CL, et al. Term infants fed formula supplemented with selected blends of prebiotics grow normally and have soft stools similar to those reported for breast-fed infants. J Pediatr Gastroenterol Nutr 2007;44:359-64. https://doi.org/10.1097/MPG.0b013e31802fca8c
  80. Fanaro S, Marten B, Bagna R, Vigi V, Fabris C, Pena-Quintana L, et al. Galacto-oligosaccharides are bifidogenic and safe at weaning: a double-blind randomized multicenter study. J Pediatr Gastroenterol Nutr 2009;48:82-8. https://doi.org/10.1097/MPG.0b013e31817b6dd2
  81. Sabater-Molina M, Larque E, Torrella F, Zamora S. Dietary fructooligosaccharides and potential benefits on health. J Physiol Biochem 2009;65:315-28. https://doi.org/10.1007/BF03180584
  82. Koppen IJ, Benninga MA, Tabbers MM. Is there a role for pre-, pro- and synbiotics in the treatment of functional constipation in children? A systematic review. J Pediatr Gastroenterol Nutr 2016;63 Suppl 1: S27-35.

Cited by

  1. Construction and Evaluation of Peptide-Linked Lactobacillus brevis β-Galactosidase Heterodimers vol.27, 2020, https://doi.org/10.2174/0929866527666200813201242
  2. Exopolysaccharides From Lactobacillus paracasei Isolated From Kefir as Potential Bioactive Compounds for Microbiota Modulation vol.11, 2020, https://doi.org/10.3389/fmicb.2020.583254
  3. Current Insights on Early Life Nutrition and Prevention of Allergy vol.8, 2020, https://doi.org/10.3389/fped.2020.00448
  4. The Impact of Dietary Fucosylated Oligosaccharides and Glycoproteins of Human Milk on Infant Well-Being vol.12, pp.4, 2020, https://doi.org/10.3390/nu12041105
  5. Framework as a Service, FaaS: Personalized Prebiotic Development for Infants with the Elements of Time and Parametric Modelling of In Vitro Fermentation vol.8, pp.5, 2020, https://doi.org/10.3390/microorganisms8050623
  6. Differences in gut microbiota between allergic rhinitis, atopic dermatitis, and skin urticaria : A pilot study vol.100, pp.9, 2020, https://doi.org/10.1097/md.0000000000025091
  7. Advances in the Relationships Between Cow’s Milk Protein Allergy and Gut Microbiota in Infants vol.12, 2021, https://doi.org/10.3389/fmicb.2021.716667
  8. Effects of Infant Formula Supplemented With Prebiotics and OPO on Infancy Fecal Microbiota: A Pilot Randomized Clinical Trial vol.11, 2020, https://doi.org/10.3389/fcimb.2021.650407
  9. Antituberculosis Therapy and Gut Microbiota: Review of Potential Host Microbiota Directed-Therapies vol.11, 2020, https://doi.org/10.3389/fcimb.2021.673100
  10. Obesity, Early Life Gut Microbiota, and Antibiotics vol.9, pp.2, 2020, https://doi.org/10.3390/microorganisms9020413
  11. Characterization of the Luminal and Mucosa-Associated Microbiome along the Gastrointestinal Tract: Results from Surgically Treated Preterm Infants and a Murine Model vol.13, pp.3, 2021, https://doi.org/10.3390/nu13031030
  12. Human Milk Microbiota and Oligosaccharides: A Glimpse into Benefits, Diversity, and Correlations vol.13, pp.4, 2021, https://doi.org/10.3390/nu13041123
  13. Kinetic modeling of the enzymatic synthesis of galacto-oligosaccharides: Describing galactobiose formation vol.127, 2021, https://doi.org/10.1016/j.fbp.2021.02.004
  14. Deciphering effectual binding potential of xylo-substrates towards xylose isomerase and xylokinase through molecular docking and molecular dynamic simulation vol.39, pp.11, 2021, https://doi.org/10.1080/07391102.2020.1772882
  15. How Gut Microbiota Supports Immunity, Growth and Development of Preterm Infants: A Narrative Review vol.5, pp.sp1, 2020, https://doi.org/10.20473/amnt.v5i1sp.2021.14-20
  16. The Microbiota-Bone-Allergy Interplay vol.19, pp.1, 2022, https://doi.org/10.3390/ijerph19010282