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ABSTRACT

The latest definition of a prebiotic is “a substrate that is selectively utilized by host 
microorganisms conferring a health benefit”; it now includes non-food elements and 
is applicable to extra-intestinal tissues. Prebiotics are recognized as a promising tool 
in the promotion of general health and in the prevention and treatment of numerous 
juvenile diseases. Prebiotics are considered an immunoactive agent, with the potential for 
long-lasting effects extending past active administration of the prebiotic. Because of its 
extremely low risk of serious adverse effects, ease of administration, and strong potential 
for influencing the composition and function of the microbiota in the gut and beyond, the 
beneficial clinical applications of prebiotics are expanding. Prebiotics are the third largest 
component of human breast milk. Preparations including galactooligosaccharides (GOS), 
fructooligosaccharides (FOS), 2'-fucosyllactose, lacto-N-neo-tetraose are examples of 
commonly used and studied products for supplementation in baby formula. In particular, the 
GOS/FOS combination is the most studied. Maintaining a healthy microbiome is essential to 
promote homeostasis of the gut and other organs. With more than 1,000 different microbial 
species in the gut, it is likely more feasible to modify the gut microbiota through the use of 
certain prebiotic mixtures rather than supplementing with a particular probiotic strain. In 
this review, we discuss the latest clinical evidence regarding prebiotics and its role in gut 
immunity, allergy, infections, inflammation, and functional gastrointestinal disorders.
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INTRODUCTION

Centuries ago, Hippocrates stated that “All diseases begin in the gut”. This statement 
has stood the test of time and has proven to be largely insightful. An increasing number 
of chronic non-communicable disorders affecting various bodily systems are linked to 
disturbances in the gut microbiome and originate early on in life. Along with genetic and 
environmental factors, diet is recognized as a key factor in shaping the composition and 
the function of the gut microbiome. Prebiotics are dietary fibers that can significantly 
influence the development of the microbial community in the gut. This review will discuss 

Pediatr Gastroenterol Hepatol Nutr. 2020 Jan;23(1):1-14
https://doi.org/10.5223/pghn.2020.23.1.1
pISSN 2234-8646·eISSN 2234-8840

Review Article

Received: Dec 3, 2019
Accepted: Dec 23, 2019

Correspondence to
Mohamad Miqdady
Department of Pediatric, Sheikh Khalifa 
Medical City, Haza Bin Zayed the 1st Street, Al 
Karamah, Abu Dhabi 5190, UAE.
E-mail: msmiqdady@yahoo.com

Copyright © 2020 by The Korean Society of 
Pediatric Gastroenterology, Hepatology and 
Nutrition
This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution Non-Commercial License (https://
creativecommons.org/licenses/by-nc/4.0/) 
which permits unrestricted non-commercial 
use, distribution, and reproduction in any 
medium, provided the original work is properly 
cited.

ORCID iDs
Mohamad Miqdady  
https://orcid.org/0000-0001-9089-9424

Conflict of Interest
The authors have no financial conflicts of 
interest.

Mohamad Miqdady , Jihad Al Mistarihi, Amer Azaz, and David Rawat

Department of Pediatric, Sheikh Khalifa Medical City, Abu Dhabi, UAE.

Prebiotics in the Infant Microbiome: 
The Past, Present, and Future

https://pghn.org
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0001-9089-9424
https://orcid.org/0000-0001-9089-9424
http://crossmark.crossref.org/dialog/?doi=10.5223/pghn.2020.23.1.1&domain=pdf&date_stamp=2020-01-09


the relationship between prebiotics and the microbiome and the role of the gut-associated 
immune system in shaping gastrointestinal function. It will also sum up the evolution of the 
prebiotic concept and highlight their therapeutic potential during development.

THE GUT MICROBIOME

By virtue of harboring about two thirds of the overall immune tissues and more than three 
quarters of the immunoglobulin producing cells, the gastrointestinal tract (GI) is considered 
the largest immune organ in the human body [1,2]. The gut-associated lymphoid tissue plays 
a key role in the complex mechanisms of immune regulation through a dynamic interaction 
with the GI tract. Upon exposure to microbe-related antigens, such interactions can result 
in either tolerance or elimination of the foreign antigens. Further, the presence of these 
antigens may promote inflammation of the GI tract resulting in compromised gut function 
and increased intestinal permeability [3]. A healthy intestinal microbiome is essential for 
homeostasis in the gut and in overall health; however, the uncontrolled excessive growth of 
certain bacterial populations leads to a variety of harmful conditions. The gut microbiota 
in a eubiotic status is characterized by a preponderance of potentially beneficial species. 
Disorders such as obesity, inflammatory bowel diseases, metabolic syndrome, allergy, 
autoimmune disorders, and autism are increasingly linked to dysbiosis in the gut [4-6]. This 
in turn leads to disturbances in the immune function of gut-associated lymphoid tissue 
(GALT) and associated damage of the GI.

The gut microbiota is increasingly recognized as an important factor influencing GALT 
immune function and with regard to its interactions with the gut epithelium. In the last few 
decades, knowledge of the gut microbiota has significantly expanded. More is known about 
its composition and function, with the evolution of new data targeting its modification in 
favor of promoting overall human health. Owing to its presence in large numbers (almost 
more than 10 times the number of cells in human body) and its genetic coding material 
(the microbiome, which is 150 times larger than the human genome), the gut microbiota is 
thought to have a profound effect on human metabolism and immune system development 
[7]. With such a well-defined functional capacity, there are emerging calls for it to be 
considered as an organ capable of interacting with other organs [8].

ACQUISITION OF THE GUT MICROBIOME

The majority of molecular testing based data suggests that babies are born germ free 
[9]. It is believed that a baby may acquire microbes prior to delivery via transplacental 
transfer; however emerging evidence negates this and in fact, suggests that the microbes 
were acquired through contamination [10,11]. With the development of better detection 
techniques, the identification of fetal microbes will be feasible and this will improve current 
knowledge pertaining to GI development.

There are numerous factors including genetics, mode of delivery, host physiology, breast 
or bottle feeding and other environmental elements such as living conditions and use of 
medications that can influence the development of the gastrointestinal microbiota during the 
early stages of life [12-15].
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Originating from the birth canal, Escherichia coli populates infant GI tracts early on and is 
followed by the appearance of bifidobacteria, Bacteroides, and Clostridium within the first week 
of life [16]. Bifidobacterium and Lactobacillus species tend to dominate the gut of breast milk-fed 
infants at the expense of E. coli and other facultative anaerobic microorganisms. In formula 
fed infants, Bacteroides, Clostridium, and Enterobacteriaceae cohabitate the gut and eventually 
eliminate bifidobacteria [17-19]. After dynamic fluctuation in bacterial composition in the 
interim period, the gut microbiota become well established, functionally stable and resemble 
the composition observed in adults by around the age of 2–3 years [20,21].

DIET AND THE GUT MICROBIOTA

Diet is increasingly recognized as a key environmental factor that can modulate the 
composition and metabolic function of the GI microbiota [22]. The beneficial biological 
effect of diet on the microbiome is attributed to its prebiotic components. In human breast 
milk, these components are linked to the carbohydrate fraction of the milk and referred to as 
Human Milk Oligosaccharides (HMOs). Their complex structure is based on lactose to which 
monosaccharides like fucose, N-acetylglucosamine and/or sialic acid are attached at specific 
linkage points. They are the third largest constituent of human milk after lactose and fat, and 
have been shown to selectively stimulate the growth of bifidobacteria & lactobacilli in the 
intestines [23-25].

Currently there are more than 200 molecules of HMOs that have been characterized with the 
amount and composition varying substantially between lactating women and over the course 
of lactation [26,27]. Different HMOs are likely to have different functions which presumably 
contribute to the variability in its composition; however prebiotics are also associated with 
other factors such as genetics, ethnicity, parity, geographic location, season of collection, 
and breastfeeding [28].

With the knowledge that bovine milk is almost completely devoid of milk oligosaccharides, 
recent biotechnical advances have made it possible to produce some synthetic milk 
oligosaccharides in large quantities. These advances enable supplementation of infant milk 
formula with the goal of promoting gut microbiota composition and function that is similar 
to that of a breast-fed infant [29-31]. Preparations like galactooligosaccharides (GOS), 
fructooligosaccharides (FOS), 2'-fucosyllactose, lacto-N-neo-tetraose, inulin, oligofructose 
and galactofructose are examples of commonly used and studied products. Other sources of 
prebiotics include xylo-oligosaccharides, which are polymers of sugar xylose, produced from 
plant fiber, and isomalto-oligosaccharides, which are a mixture of digestion-resistant short 
chain carbohydrates naturally found in some foods as well as commercially manufactured 
products. Phytochemicals are a source of prebiotics and probiotics, and several chemical 
compounds such as polyphenols and derivatives, carotenoids and thiosulphates, which can 
promote gut microbiota function and are therefore being explored as a treatment for obesity 
and inflammatory diseases in adults (Fig. 1) [32]. It is important to note that those added 
to infant formula are synthetic and not human, thus it is more accurate to refer to them as 
MO's ‘Milk oligosaccharides’ rather than HMO's ‘HMOS’, as such inaccurate labelling may be 
deceiving to consumers. Although, these synthetic oligosaccharides are still not fully similar 
in structure to natural HMOs, their addition to milk formulas administered to healthy infants 
is thought to have potential positive effects and does not raise safety concerns with regards to 
infant development or result in other adverse effects [33,34]. Infant formulae supplemented 
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with GOS and FOS are well-studied in randomized clinical studies with proven benefits in 
terms of reducing infections and risk of allergy [32].

DEFINITION OF PREBIOTICS

The definition of prebiotics has evolved significantly over the last two decades. The concept 
of prebiotics was first introduced in 1995 as “a non-digestible food ingredient that beneficially 
affects the host by selectively stimulating the growth and/or activity of one or a limited 
number of bacteria in the colon, and thus improves host health [35].” Only substances that 
affect a limited number of bacteria in the gut, namely that of bifidobacteria and lactobacilli, 
were considered in early discussions. In 2004, the definition of prebiotic was updated to 
“selectively fermented ingredients that allow specific changes, both in the composition and/
or activity in the gastrointestinal microflora that confers benefits upon host well-being and 
health”, therefore imposing the condition that claimed beneficial effects should be proven in 
the target host. To do so, prebiotics should resist host digestion and enable fermentation by 
intestinal microbiota [36].

With advances in molecular methods and increasing evidence about the diversity and 
density of bacterial communities, The International Scientific Association for Probiotics 
and Prebiotics (ISAPP), in 2010, issued a consensus statement updating the definition of 
dietary prebiotic as “a selectively fermented ingredient that results in specific changes in the 
composition and/or activity of the gastrointestinal microbiota, thus conferring benefit(s) 
upon host health [37].” This updated definition includes a non-specific number of bacterial 
species. It further expands the location considered, from only the colon to the entire length 
of the GI tract.

In 2015, Bindels and colleagues [38] proposed that a prebiotic should be defined as “a 
non-digestible compound that, through its metabolization by microorganisms in the gut, 
modulates the composition and/or activity of the gut microbiota, thus, conferring a beneficial 
physiological effect on the host.” Although this update eliminated microorganism specificity 
and selective fermentation processes as essential requirements, it still limited the prebiotics 
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to interactions with gut microbiota excluding accordingly extra-intestinal habitats such as 
skin, respiratory tract, and vagina [38]. More recently, and armed with the latest scientific 
and clinical developments, ISAPP reconvened in December 2017 to expand the scope of 
the concept of prebiotic to “a substrate that is selectively utilized by host microorganisms 
conferring a health benefit.” Whilst retaining the microbiota-mediated health benefits, 
prebiotics accordingly, are not limited to food or carbohydrate substances only and are no 
longer restricted to the GI. They are now inclusive of non-food elements and applicable to 
extra-intestinal tissues. Furthermore, this definition is now applicable to animals [39].

MECHANISM OF ACTION OF PREBIOTICS

Despite the many advances in elucidating the mechanism of action of prebiotics, they remain 
partially elusive. The mechanism of action of prebiotics is postulated to be largely due to 
indirect effects. This includes acting as a fuel source for selective fermentation by resident 
health-promoting microorganisms of the GI tract, which are required for protecting against 
pathogens, or to improve intestinal barrier function, orchestrate immune pathways and 
influence brain function [40,41]. Short chain fatty acids (SCFAs) are the main end products 
of selective fermentation. They mediate the direct effects of the prebiotics by providing 
an energy source to the gut epithelium. They also play a role in local gene expression by 
improving accessibility to transcription factors, enhancing intestinal barrier by regulating the 
assembly of tight junction proteins, improving gut motility, metabolite absorption, sugar and 
lipid homeostasis and immune function (Fig. 2). Acetate, propionate, and butyrate are the 
major SCFAs formed out of the fermentation process. Along with lactic acid, they participate 
in lowering the pH of the gut to levels that inhibit the growth of pathogens [42]. SCFAs 
are also thought to increase mucin production that can contribute to a lower incidence of 
bacterial translocation across the gut barrier [43]. Prebiotics, such as GOS, can exert a direct 
antimicrobial effect by adhering to the binding sites of bacteria on the enterocyte surface and 
thus, block the adhesion of pathogenic bacteria to intestinal epithelial cells [44,45].
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APPLICATION OF PREBIOTICS IN CLINICAL PRACTICE

According to the systematic review by the European Society of Pediatric Gastroenterology, 
Hepatology and Nutrition (ESPGHAN) Committee on Nutrition published in the year 2011, 
the most commonly studied prebiotic was a 9:1 mixture of short-chain GOS (scGOS) and 
long-chain FOS (lcFOS); the predominant short chain to mimic the composition found in 
breast milk. Other prebiotics studied were GOS, acidic oligosaccharides (AOS), GOS/FOS/
AOS, oligofructose plus inulin, and polydextrose plus GOS (with or without lactulose). Doses 
of various prebiotics in different studies ranged from 0.15 to 0.8 g/100 mL with a variable 
duration of intervention ranging from 2 weeks to 6 months [34]. Due to the limited numbers 
and heterogeneity of the various studies reviewed by the working group it was difficult to draw 
any robust conclusions based on these results. However, the potential beneficial effects of 
prebiotics were recognized; these effects included improvement in gut immunity, reduction in 
some atopic conditions, and alleviation of recurrent infections and inflammation. The use of 
prebiotics for functional diseases was also appreciated by the ESPGHAN working group and 
further appraised in a systematic review by the Dutch group in 2016 [34].

PREBIOTICS AND GUT IMMUNITY

The GALT is the largest lymphoid tissue in the body, and mature lymphocytes in the gut 
mucosa vastly outnumber those in the bone marrow. A coordinated interaction between the 
gut microbiota and the immune system exists, allowing the host to tolerate the abundance of 
antigens present in the gut. Modulation of various GALT-associated immunological processes 
is thought to be the means through which prebiotics exert their beneficial effects. This is 
understood to be accomplished indirectly through increasing populations of beneficial 
microbes, especially lactic acid producing bacteria and bifidobacteria, in the gut. These 
probiotics, in turn increase the expression of anti-inflammatory cytokines, whilst reducing 
the expression of proinflammatory cytokines [46]. Butyrate, one of the SCFAs, was found 
to be associated with an increase in T-regulatory cells and a reduction in the production of 
IFN-γ. These findings, in conjunction with its effects on colonic epithelial proliferation and 
barrier function, suggests that butyrate is an important negative regulator of inflammation 
[47]. Moreover, acetate, the most abundantly produced SCFA in the colon, has been shown 
to exert anti-inflammatory effects through specific receptors that are expressed in adipose 
tissue and peripheral blood cells. Its high concentration in the bloodstream lead to the 
belief that systemic anti-inflammatory effects of this SCFA might be observed in other auto-
immune diseases [48,49].

The correlation between Bifidobacterium and the amount of intestinal secretory IgA has been 
well established [50,51]. Although the addition of a specific mixture of 0.6 g/100 mL of a GOS 
and FOS in a 9:1 ratio to infant formula showed that intestinal secretory IgA concentration at 
weeks 8 and 26 did not differ from the control group, after 26 weeks of the intervention there 
was a significant difference noted that was comparable to the breast-fed group [52,53].

PREBIOTICS AND ALLERGIES

Increasing evidence suggests that the gut microbiome contributes to the pathophysiology of 
such inflammatory disorders [54-56]. Research studying the differences in gut microbiota of 
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atopic and non-atopic infants is of current interest [57,58]. Kalliomäki et al. [57] investigated 
whether a specific composition of the early gut microflora precedes the later development 
of atopic sensitization. They analyzed the intestinal flora of infants at high risk of atopy at 
3 weeks and 3 months of life. The infants were classified as atopic if they had at least one 
positive skin prick test at the age of 12 months. The results demonstrated that infants who 
exhibited atopy at the age of 12 months had more clostridia and fewer bifidobacteria in their 
stools at the age of three weeks than the non-atopic infants. Accordingly, it was suggested 
that preponderance of bifidobacteria was associated with maturation in immune function 
towards a non-atopic state [57].

The supplementation of prebiotics has been proposed as a possible method of intervention 
in preventing allergic disorders [59,60]. In infants that are not exclusively breast-fed, 
evidence-based recommendations from the World Allergy Organization guideline panel 
and ESPGHAN Committee on Nutrition suggest the use of prebiotic supplementation as 
a preventative intervention for allergies. However, the same does not apply to infants that 
are exclusively breast-fed since the breast milk already contains large amount of prebiotic in 
addition to other protective components [34,59,61].

One study conducted a small placebo-controlled investigation on the efficacy of prebiotic use 
of FOS in the treatment of eczema, which was assessed using the scoring atopic dermatitis 
index. The authors in this study reported significantly lower median scores in eczema 
compared to the placebo group after treatment for 6 weeks and 12 weeks [60].

Another dietary intervention study conducted by Arslanoglu et al. [62], determined that in 
the first two years of life, supplementation of a prebiotic mixture (8 g/L of scGOS/lcFOS) 
results in significantly reduced incidences of allergic manifestations, such as recurrent 
wheezing, atopic dermatitis and allergic urticaria. These effects were noted to last even after 
the completion of the intervention; in other words, this suggests a long-lasting immune 
modulating effect of the prebiotic mixture [62].

The majority of the meta-analysis and systematic reviews conducted in this area concluded 
that although the studies determine the use of prebiotics to positively impact allergic 
manifestations, the existing evidence is insufficient, and thus, further rigorous testing is 
required before prebiotics can be recommended as a routine method for allergy prevention 
in formula-fed infants [34,63]. This is, in part, due to the many other possible factors that 
contribute to the development of allergies.

PREBIOTICS AND INFECTIONS

Supplementation of infant milk formula with a specific oligosaccharide composition (GOS/
FOS) is shown in different experiments including randomized controlled trial (RCT) to 
significantly increase the number of bifidobacteria and reduce the number of pathogens 
such as E. coli, clostridia, and eubacteria in infants and older children when compared with a 
group of infants fed an un-supplemented formula [64,65]. Furthermore, they result in stool 
characteristics that are similar to those found in infants fed human milk, suggesting a better 
gastrointestinal tolerance [66]. Such effects, though, can be dose dependent, with better 
results being observed following increased dosages [67,68]. However, the clinical relevance of 
these observations remains questionable and unclear [34].

7https://pghn.org https://doi.org/10.5223/pghn.2020.23.1.1

Prebiotics and Child Health

https://pghn.org


Oligosaccharide prebiotics were also found in RCT over a 6-month period to significantly 
reduce the number of infectious episodes (gastrointestinal and respiratory infections) and 
the incidence of recurring, particularly respiratory, infections during the first 6 months of 
life. It was postulated that immune modulating effects of the prebiotic mixture through 
alterations in the intestinal flora is the principal factor driving the observed preventative 
mechanism early in life [69].

PREBIOTICS AND INFLAMMATION

Prebiotics enables correction of potential environmental triggers such as the dysbiosis 
between disease-inducing and protective intestinal flora that induces and perpetuates 
chronic inflammation of the bowel and other extra-intestinal organs. By selectively 
stimulating the growth of protective microorganisms such as Bifidobacterium and enhancing 
the resistance to colonization with disease-inducing bacteria like that of Bacteroides spp., 
prebiotics have been shown to contribute to the reduction of inflammation [70,71]. Some 
prebiotics were found to be beneficial in certain animal models of colitis. In humans, given 
on its own or in combination with probiotics, prebiotics resulted in some improvement in 
some parameters of inflammatory bowel disease (IBD) in a few small, controlled studies. 
Though promising, the number of patients recruited to these studies was too small to draw 
meaningful conclusions [72]. The above findings are nonetheless very informative and 
remain the focus for further better designed studies on the use of prebiotics in IBD.

PREBIOTICS AND FUNCTIONAL GASTROINTESTINAL 
DISORDERS
There have been significant advances in the definition and classification of functional 
gastrointestinal disorders in children, however the etiology remains unclear. Infantile 
colic is a fairly common functional disorder among young infants but remains largely 
misunderstood. Recently, disturbances in the gut microbiota have been implicated in the 
causation of colic through its effect on gut motility which can impact on gaseous production 
and therefore excessive crying. There is evolving data specifically showing that there is less 
diverse microbiota and lesser numbers of bifidobacteria and lactobacilli in infants with colic 
compared to controls [73,74].

In an observational study on 214 infants with colic aged up to 3 months, Savino et al. 
[75], showed that the frequency of colic was reduced in 79% of infants who received a 
formula containing 90% ScGOS, 10% Lc-FOS, sn-2 palmitic acid and partially hydrolyzed 
proteins. The majority of related studies indicated that when taken in sufficient amounts, 
prebiotics soften stools, increase stool frequency without diarrhea, and increase the ratio of 
bifidobacteria to total fecal bacteria [76,77].

In an RCT, using inulin-type fructans (containing 70% oligofructose, 30% IcFOS) 
supplementation significantly improved stool consistency, frequency, and texture to a 
softer consistency over time [78]. This finding was consistent with those of previous studies 
conducted on infants and adults and suggests that laxative use in treatment of constipation 
could potentially be reduced with the implementation of prebiotic treatment [79-81]. However, 
a more recent systematic review failed to identify robust data to recommend using prebiotics 
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for the treatment of constipation [82]. A plausible explanation for the lack of recommendation 
is that there are numerous other contributing causative factors for constipation.

With regard to irritable bowel syndrome and functional abdominal pain, there have been 
no published randomized controlled trials identified investigating the effect of prebiotics 
in children. There are two pediatric studies looking at the effect of low-Fermentable 
Oligosaccharides, Disaccharides, Monosaccharides, and Polyols diet in children; however, 
both groups did not study the long-term beneficial effects and both lacked statistical 
validation, therefore it is difficult to draw any robust conclusions from these findings [82].

CONCLUSION

Prebiotics are now recognized as a promising therapeutic tool in the prevention and 
treatment for numerous disease states in children and for promoting overall health. Indeed, 
considering the extremely low risk of serious adverse effects, ease of administration, and 
strong potential to influence the composition and function of the microbiota in the gut 
and beyond, the beneficial clinical application of prebiotics seems promising. Prebiotics, 
are emerging as an immunoactive ingredient that may possess the potential of exerting 
long-lasting effects. This concept will further evolve to encompass future novel health 
potentials applicable to any microbial community to achieve advantageous effects beyond 
the food and pharmaceutical domains making. As technology advances, the development of 
curated prebiotic molecules with specific functional properties is an attractive and potential 
future achievement. Along with the calls for their free use, there remains a magnitude of 
unanswered questions related to their clinical significance, efficacy, mechanism of action, 
and possible long-term side effects. This highlights the need for further well-conducted 
research on the diversity and clinical applicability of prebiotics in health and disease.
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