DOI QR코드

DOI QR Code

Experimental Study on Dynamic Behavior of a Titanium Specimen Using the Thermal-Acoustic Fatigue Apparatus

열음향 피로 시험 장치를 이용한 티타늄 시편의 동적 거동에 관한 실험적 연구

  • Go, Eun-Su (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, Mun-Guk (Department of Aerospace Engineering, Chungnam National University) ;
  • Moon, Young-Sun (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, In-Gul (Department of Aerospace Engineering, Chungnam National University) ;
  • Park, Jae-Sang (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, Min-Sung (Agency for Defense Development)
  • Received : 2019.10.30
  • Accepted : 2020.01.07
  • Published : 2020.02.01

Abstract

High supersonic aircraft are exposed to high temperature environments by aerodynamic heating during supersonic flight. Thermal protection system structures such as double-panel structures are used on the skin of the fuselage and wings to prevent the transfer of high heat into the interior of an aircraft. The thin-walled double-panel skin can be exposed to acoustic loads by supersonic aircraft's high power engine noise and jet flow noise, which can cause sonic fatigue damage. Therefore, it is necessary to examine the behavior of supersonic aircraft skin structure under thermal-acoustic load and to predict fatigue life. In this paper, we designed and fabricated thermal-acoustic test equipment to simulate thermal-acoustic load. Thermal-acoustic testing of the titanium specimen under thermal-acoustic load was performed. The analytical model was verified by comparing the thermal-acoustic test results with the finite element analysis results.

고초음속 항공기는 초음속 비행 중 공력 가열에 의하여 높은 온도 환경에 노출되기 때문에 동체 및 날개 구조물은 더블 패널 형태의 열 차폐 구조로 설계하여 기체 내부로 높은 온도의 열이 전달되는 것을 막는다. 얇은 두께의 더블 패널 외피는 초음속 항공기의 고출력 엔진 소음과 제트 유동에 의한 음향 하중에 노출되어 음향 피로 손상이 발생할 수 있다. 따라서 열음향 복합 하중을 받는 초음속 항공기 외피 구조의 거동 확인과 피로수명 예측이 필요하다. 본 논문에서는 열음향 복합 하중을 모사할 수 있는 열음향 시험 장치를 설계/제작하여 열음향 하중이 적용되는 티타늄 시편의 열음향 시험을 수행하였다. 열음향 복합 하중에 의한 구조물의 동적 거동을 확인하였으며, 시편 단위 열음향 시험 결과와 유한요소해석 결과를 비교하여 해석 모델을 검증하였다.

Keywords

References

  1. Jenkins, J. M., and Quinn, R. D., A Historical Perspective of the YF-12A Thermal Loads and Structures Program, NASA Technical Memorandum 104317, 1996.
  2. Beier, T. H., and Heaton, P., High Speed Research Program Sonic Fatigue Summary Report, NASA/CR-2005-213742, 2005.
  3. Glass, D., "Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) and Hot Structures for Hypersonic Vehicles," 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2008.
  4. Jenkin, J. M., and Quinn, R. D., A Historical Perspective of the YF-12A Thermal Loads and Structures Program, NASA Technical Memorandum 104317, 1996.
  5. Zuchowski, B., Air Vehicles Integration and Technology Research (Aviatr) Task Order 0015: Predictive Capability for Hypersonic Structural Response and Life Prediction Phase 1-Identification of Knowledge Gaps, AFRL-RB-WP-TR-2010-3069, 2010.
  6. Blevins, R., Bofilios, D., Holehouse, I., Hwa, V., Tratt, M., Laganelli, A., Pozefsky, P., and Pierucci, M., Thermo-Vibro-Acoustic Loads and Fatigue of Hypersonic Flight Vehicle Structure, U.S. Air Force Research Laboratory, TR AFRL-RB-WP-TR-2009-3139, 2009.
  7. Rizzi, S. A., and Turner, T. L., "Enhanced Capabilities of the NASA Langley Thermal Acoustic Fatigue Apparatus," Proceedings of the 6th International Conference on Recent Advances in Structural Dynamics, Vol. 2, 1997, pp. 919-933.
  8. Betts, J. F., Experimental Structural Dynamic Response of Plate Specimens Due to Sonic Loads in a Progressive Wave Tube, NASA/CR-2001-211045, 2001.
  9. Kim, J. H., Lee, K. B., and Hwang, C. G., "Thermo-Mechanical Characteristics of a Plate Structure under Mechanical and Thermal Loading," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 34, No. 11, 2006, pp. 26-34. https://doi.org/10.5139/JKSAS.2006.34.11.026
  10. Jun, J. T., Kang, H. W., and Yang, M. S., "Development and Application of the Super High Temperature Thermal Test Equipment," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 43, No. 1, 2015, pp. 33-39. https://doi.org/10.5139/JKSAS.2015.43.1.33
  11. Moon, Y. S., Go, Y. J., Kim, I. G., Choi, J. S., and Kim, M. S., "Design Progressive Wave Tube Using Loudspeaker," Proceeding of The Korea Institute of Military Science and Technology Conference, June 2017, pp. 137-138.