DOI QR코드

DOI QR Code

PMN-PZT/Ni 자기-전기 복합체에서 단결정 압전 모드에 따른 자기장 감도 특성

Magnetic-field Sensitivity of PMN-PZT/Ni Magnetoelectric Composite with Piezoelectric Single Crystal Mode Changes

  • 박소정 (영남대학교 신소재공학부) ;
  • ;
  • 류정호 (영남대학교 신소재공학부)
  • Park, Sojeong (School of Materials Science and Engineering, Yeungnam University) ;
  • Peddigari, Mahesh (Functional Ceramics Group, Korea Institute of Materials Science) ;
  • Ryu, Jungho (School of Materials Science and Engineering, Yeungnam University)
  • 투고 : 2019.12.10
  • 심사 : 2020.01.15
  • 발행 : 2020.01.31

초록

Magnetoelectric (ME) composites were designed using the PMN-PZT single crystal and Ni foils; the properties and magnetic-field sensitivities of ME composites with different piezoelectric vibration modes (i.e., 31, 32, and 36 modes that depend on the crystal orientation of the single crystal) were compared. In the off-resonance condition, the ME coupling properties of the ME composites with the 32 and 36 piezoelectric vibration modes were better than those of the ME composites with the 31 piezoelectric vibration mode. However, in the resonance condition, the ME coupling properties of the ME composites were almost similar, irrespective of the piezoelectric vibration mode. Additionally, in the off-resonance condition (at 1 kHz), the magnetic-field sensitivity of the ME composites with the 36 piezoelectric vibration mode was up to 2 nT and those of the ME composites with the 31 and 32 piezoelectric vibration modes were up to 5 nT. These magnetic-field sensitivities are similar to those offered by conventional high-sensitivity magnetic-field sensors; the potential of the proposed sensor to replace costly and bulky high-sensitivity magnetic field sensors is significant.

키워드

참고문헌

  1. V. Annapureddy, S. M. Na, G. T. Hwang, M. G. Kang, R. Sriramdas, H. Palneedi, W. H. Yoon, B. D. Hahn, J. W. Kim, C. W. Ahn, D. S. Park, J. J. Choi, D. Y. Jeong, A. B. Flatau, M. Peddigari, S. Priya, K. H. Kim, and J. Ryu, "Exceeding milli-watt powering magneto-mechano-electric generator for standalone-powered electronics", Energy Environ. Sci., Vol. 11, No. 4, pp. 818-829, 2018. https://doi.org/10.1039/c7ee03429f
  2. H. Palneedi, V. Annapureddy, S. Priya, and J. Ryu, "Status and Perspectives of Multiferroinc Magnetoelectric Composite Materials and Applications", Actuators, Vol. 5, No. 1, pp. 1-31, 2016. https://doi.org/10.3390/act5010001
  3. J. Ryu, J. E. Kang, Y. Zhou, S. Y. Choi, W. H. Yoon, D. S. Park, J. J. Choi, B. D. Hahn, C. W. Ahn, J. W. Kim, Y. D. Kim, S. Priya, S. Y. Lee, S. Jeong, and D. Y. Jeong, "Ubiquitous magneto-mechano-electric generator", Energy Environ. Sci., Vol. 8, No. 8, pp. 2402-2408, 2015. https://doi.org/10.1039/C5EE00414D
  4. J. Ryu, S. Y. Choi, J. W. Kim, K. H. Kim, and D. Y. Jeong, "Energy harvester technology using magnetoelctric composite", Ceramist, Vol. 18, No. 4, pp. 38-47, 2015.
  5. S. Priya, J. Ryu, C. S. Park, J. Oliver, J. J. Choi, and D. S. Park, "Piezoelectric and Magnetoelectric Thick Films for Fabricating Power Sources in Wireless Sensor Nodes", Sensors, Vol. 9, No. 8, pp. 6362-6384, 2009. https://doi.org/10.3390/s90806362
  6. Z. Chu, W. Shi, H. Shi, Q. Chen, L. Wang, M. J. PourhosseiniAsl, C. Xiao, T. Xie, and S. Dong, "A 1D Magnetoelectric Sensor Array for Magnetic Sketching", Adv. Mater. Technol., Vol. 4, No. 3, pp. 1800484(1)-1800484(9), 2018. https://doi.org/10.1002/admt.201800484
  7. M. Li, C. Dong, H. Zhou, Z. Wang, X. Wang, X. Liang, Y. Lin, and N. X. Sun, "Highly Sensitive DC Magnetic Field Sensor Based on Nonlinear ME Effect", IEEE Sens. Lett., Vol. 1, No. 6, pp. 2501104(1)- 2501104(4), 2017.
  8. D. Burdin, D. Chashin, N. Ekononov, L. Fetisov, Y. Fetisov, and M. Shamonin, "DC magnetic field sensing based on the nonlinear magnetoeletric effect in magnetic heterostructures", J. Phys. D Appl. Phys., Vol. 49, No. 37, pp. 375002(1)- 375002(10), 2016.
  9. L. Chen, P. Li, Y. Wen, and Y. Zhu, "Note: High sensitivity self-bias magnetoelectric sensor with two different magnetostrictive materials", Rev. Sci. Instrum., Vol. 84, No. 6, pp. 066101(1)-066101(3), 2013. https://doi.org/10.1063/1.4808322
  10. J. Zhai, Z. Xing, S. Dong, J. Li, and D. Viehland, "Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature", Appl. Phys. Lett., Vol. 88, No. 6, pp. 062510(1)-062510(3), 2006. https://doi.org/10.1063/1.2172706
  11. Z. Chu, M. PourhosseiniAsl, and S. Dong, "Review of multi-layered magnetoelectric composite materials and devices applications", J. Phys. D Appl. Phys., Vol. 51, No. 24, pp. 243001(1)-243001(21), 2018.
  12. A. V. Turutin, J. V. Vidal, I. V. Kubasov, A. M. Kislyuk, M. D. Malinkovich, Y. N. Parkhomenko, S. P. Kobeleva, O. V. Pakhomov, A. L. Kholkin, and N. A. Sobolev, "Magnetoelectric metglas/bidomain y + $140^{\circ}$-cut lithium niobate composite for sensing fT magnetic fields", Appl. Phys. Lett., Vol. 112, No. 26, pp. 262906(1)-262906(5), 2018. https://doi.org/10.1063/1.5038014
  13. S. Zhang, F. Li, F. Yu, X. Jiang, H. Y. Lee, J. Luo, and T. R. Shrout, "Recent Developments in Piezoelectric Crystals", J. Korean Ceram. Soc., Vol. 55, No. 5, pp. 419-439, 2018. https://doi.org/10.4191/kcers.2018.55.5.12
  14. H. Palneedi, V. Annapureddy, H. Y. Lee, J. J. Choi, S. Y. Choi, S. Y. Chung, S. J. L. Kang, and J. Ryu, "Strong and anisotropic magnetoelectricity in composites of magnetostrictive Ni and solid-state grown lead-free piezoelectric BZT-BCT single crystals", J. Asian Ceram. Soc., Vol. 5, No. 1, pp. 36-41, 2017. https://doi.org/10.1016/j.jascer.2016.12.005
  15. P. Berik, W. Y. Chang, and X. Jiang, "Piezoelectric $d_{36}$ inplane shear-mode of lead-free BZT-BCT single crystals for torsion actuation", Appl. Phys. Lett., Vol. 110, No. 5, pp. 052902(1)-052902(4), 2017. https://doi.org/10.1063/1.4975587
  16. P. Ci, G. Liu, Z. Chen, S. Zhang, and S. Dong, "High-order face-shear modes of relaxor-$PbTiO_{3}$ crystals for piezoelectric motor applications", Appl. Phys. Lett., Vol. 104, No. 24, pp. 242911(1)-242911(4), 2014. https://doi.org/10.1063/1.4884652
  17. D. R. Patil, R. C. Kambale, Y. Chai, W. H. Yoon, D. Y. Jeong, D. S. Park, J. W. Kim, J. J. Choi, C. W. Ahn, B. D. Hhan, S. Zhang, K. H. Kim, and J. Ryu, "Multiple broadband magnetoelectric response in thickness-controlled Ni/[011] $Pb(Mg_{1/3}Nb_{2/3})O_{3}-Pb(Zr,Ti)O_{3}$ single crystal/ Ni laminates", Appl. Phys. Lett., Vol. 103, No. 5, pp. 052907(1)-052907(4), 2013. https://doi.org/10.1063/1.4817383
  18. S. Zhang, W. Jiang, R. J. Meyer, F. Li, J. Luo, and W. Cao, "Measurement of face shear properties in relaxor-$PbTiO_{3}$ single crystals", J. Appl. Phys., Vol. 110, No. 6, pp. 064106(1)-064106(6), 2011. https://doi.org/10.1063/1.3638691
  19. F. Li, S. Zhang, Z. Xu, X. Wei, and T. R. Shrout, "Critical Property in Relaxor- $PbTiO_{3}$ Single Crystals - Shear Piezoelectric Response", Adv. Funct. Mater., Vol. 21, No. 11, pp. 2118-2128, 2011. https://doi.org/10.1002/adfm.201002711
  20. S. Zhang, J. Luo, W. Hackenberger, N. P. Sherlock, R. J. Meyer, and T. R. Shrout, "Electromechanical characterization of $Pb(In_{0.5}Nb_{0.5})O_{3}-Pb(Mg_{1/3}Nb_{2/3})O_{3}-PbTiO_{3}$ crystals as a function of crystallographic orientation and temperature", J. Appl. Phys., Vol. 105, No. 10, pp. 104506(1)-104506(5), 2009. https://doi.org/10.1063/1.3131622
  21. A. Kumar and A. Arockiarajan, "Temperature dependent magnetoelectric (ME) response in press-fit FeNi/PZT/Ni self-biased ring composite", J. Appl. Phys., Vol. 126, No. 9, pp. 094102(1)-094102(13), 2019. https://doi.org/10.1063/1.5108708
  22. S. N. Babu, A. Siddeshwar, K. Srinivas, S. V. Suryanarayana, and T. Bhimasankaram, "Magnetoelectric properties of Ni/PZT/Ni layered composite for low field applications", J. Mater. Sci., Vol. 44, pp. 3948-3951, 2009. https://doi.org/10.1007/s10853-009-3534-4
  23. D. A. Pan, Y. Bai, W. Y. Chu, and L. J. Qiao, "Ni-PZT-Ni trilayered magnetoelectric composites synthesized by electro-deposition", J. Phys. Condens. Matter, Vol. 20, No. 2, pp. 025203(1)-025203(4), 2008.
  24. H. Wan, C. Xu, and X. Z. Wu, "Magnetoelectric Effect in Ni/PZT Laminate Composites", Proc. of 2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 287-290, Zhuhai, China, 2006.
  25. H. T. Oh, H. J. Joo, M. C. Kim, and H. Y. Lee, "Thickness-Dependent Properties of Undoped and Mn-doped (001) PMN-29PT $[Pb(Mg_{1/3}Nb_{2/3})O_{3}-29PbTiO_{3}]$ Single Crystals", J. Korean Ceram. Soc., Vol. 55, No. 3, pp. 290-298, 2018. https://doi.org/10.4191/kcers.2018.55.3.07
  26. H. T. Oh, H. J. Joo, M. C. Kim, and H. Y. Lee, "Effect of Mn on Dielectric and Piezoelectric Properties of 71PMN-29PT $[71Pb(Mg_{1/3}Nb_{2/3})O_{3}-29PbTiO_{3}]$ Single Crystals and Polycrystalline Ceramics", J. Korean Ceram. Soc., Vol. 55, No. 2, pp. 166-173, 2018. https://doi.org/10.4191/kcers.2018.55.2.04
  27. H. T. Oh, J. Y. Lee, and H. Y. Lee, "Mn-Modified PMNPZT $[Pb(Mg_{1/3}Nb_{2/3})O_{3}-Pb(Zr,Ti)O_{3}]$ Single Crystals for High Power Piezoelectric Transducers", J. Korean Ceram. Soc., Vol. 54, No. 2, pp. 150-157, 2017. https://doi.org/10.4191/kcers.2017.54.2.03
  28. S. Park, M. Peddigari, G.-T. Hwang, W.-H. Yoon, A. Kumar, and J. Ryu, "Face-shear 36-mode magnetoelectric composites with piezoelectric single crystal and Metglas laminate", Appl. Phys. Lett., Vol. 115, No. 10, pp. 102901(1)-102901(4), 2019.
  29. K. H. Cho and S. Priya, "Direct and converse effect in magnetoelectric laminate composites", Appl. Phys. Lett., Vol. 98, No. 23, pp. 232904(1)-232904(3), 2011. https://doi.org/10.1063/1.3584863
  30. M. Djamal and R. Ramli, Giant Magnetoresistance Sensors Based on Ferrite Material and Its Applications, Intech Open, pp. 111-132, 2017.