DOI QR코드

DOI QR Code

NO2 Sensing Characteristics of Si MOSFET Gas Sensor Based on Thickness of WO3 Sensing Layer

  • Jeong, Yujeong (Department of Electrical Engineering, and Inter-University Semiconductor Research Center, Seoul National University) ;
  • Hong, Seongbin (Department of Electrical Engineering, and Inter-University Semiconductor Research Center, Seoul National University) ;
  • Jung, Gyuweon (Department of Electrical Engineering, and Inter-University Semiconductor Research Center, Seoul National University) ;
  • Jang, Dongkyu (Department of Electrical Engineering, and Inter-University Semiconductor Research Center, Seoul National University) ;
  • Shin, Wonjun (Department of Electrical Engineering, and Inter-University Semiconductor Research Center, Seoul National University) ;
  • Park, Jinwoo (Department of Electrical Engineering, and Inter-University Semiconductor Research Center, Seoul National University) ;
  • Han, Seung-Ik (Department of Energy Systems Research, Ajou University) ;
  • Seo, Hyungtak (Department of Energy Systems Research, Ajou University) ;
  • Lee, Jong-Ho (Department of Electrical Engineering, and Inter-University Semiconductor Research Center, Seoul National University)
  • Received : 2019.11.18
  • Accepted : 2020.01.31
  • Published : 2020.01.31

Abstract

This study investigates the nitrogen dioxide (NO2) sensing characteristics of an Si MOSFET gas sensor with a tungsten trioxide (WO3) sensing layer deposited using the sputtering method. The Si MOSFET gas sensor consists of a horizontal floating gate (FG) interdigitated with a control gate (CG). The WO3 sensing layer is deposited on the interdigitated CG-FG of a field effect transistor(FET)-type gas sensor platform. The sensing layer is deposited with different thicknesses of the film ranging from 100 nm to 1 ㎛ by changing the deposition times during the sputtering process. The sensing characteristics of the fabricated gas sensor are measured at different NO2 concentrations and operating temperatures. The response of the gas sensor increases as the NO2 concentration and operating temperature increase. However, the gas sensor has an optimal performance at 180℃ considering both response and recovery speed. The response of the gas sensor increases significantly from 24% to 138% as the thickness of the sensing layer increases from 100 nm to 1 ㎛. The sputtered WO3 film consists of a dense part and a porous part. As reported in previous work, the area of the porous part of the film increases as the thickness of the film increases. This increased porous part promotes the reaction of the sensing layer with the NO2 gas. Consequently, the response of the gas sensor increases as the thickness of the sputtered WO3 film increases.

Keywords

References

  1. O. S. Wolfbeis, "Fiber-optic chemical sensors and biosensors", Anal. Chem., Vol. 76, No. 12, pp. 3269-3284, 2004. https://doi.org/10.1021/ac040049d
  2. J. Hodgkinson, and R. P. Tatam, "Optical gas sensing: a review", Meas. Sci. Technol., Vol. 24, No. 1, pp. 012004(1)-012004(59), 2012. https://doi.org/10.1088/0957-0233/24/1/012004
  3. Z. Yunusa, M. N. Hamidon, A. Kaiser, and Z. Awang, "Gas sensors: A review", Sens. Transducers, Vol. 168, No.4, pp. 61-75, 2014.
  4. A. W. Hodgson, P. Jacquinot, L. R. Jordan, and P. C. Hauser, "Amperometric gas sensors of high sensitivity", Electroanalysis, Vol. 11, No.10-11, pp. 782-787, 1999. https://doi.org/10.1002/(SICI)1521-4109(199907)11:10/11<782::AID-ELAN782>3.0.CO;2-S
  5. A. M. Azad, S. A. Akbar, S. G. Mhaisalkar, L. D. Birkefeld, and K. S. Goto, "Solid.state gas sensors: A review", J. Electrochem. Soc., Vol. 139, No. 12, pp. 3690-3704, 1992. https://doi.org/10.1149/1.2069145
  6. S. R. Morrison, "Semiconductor gas sensors", Sens. Actuators, Vol. 2, pp. 329-341, 1981. https://doi.org/10.1016/0250-6874(81)80054-6
  7. H. M. Fahad, H. Shiraki, M. Amani, C. Zhang, V. S. Hebbar, W. Gao, H. Ota, M. Hettick, D. Kiriya, Y. Z. Chen, Y. L. Chueh, and A. Javey, "Room temperature multiplexed gas sensing using chemical-sensitive 3.5-nm-thin silicon transistors", Sci. Adv., Vol. 3, No. 3, pp. e1602557, 2017. https://doi.org/10.1126/sciadv.1602557
  8. C. H. Kim, I. T. Cho, J. M. Shin, K. B. Choi, J. K. Lee, and J. H. Lee, "A new gas sensor based on MOSFET having a horizontal floating-gate", IEEE Electron Device Lett., Vol. 35, No. 2, pp. 265-267, 2013. https://doi.org/10.1109/LED.2013.2294722
  9. Y. Hong, C. H. Kim, J. M. Shin, K. Y. Kim, J. S. Kim, C. S. Hwang, and J. H. Lee, "Highly selective ZnO gas sensor based on MOSFET having a horizontal floating-gate", Sens. Actuators, B, Vol. 232, pp. 653-659, 2016. https://doi.org/10.1016/j.snb.2016.04.010
  10. S. S. Shendage, V. L. Patil, S. A. Vanalakar, S. P. Patil, N. S. Harale, J. L. Bhosale, J. H. Kim, and P. S. Patil, "Sensitive and selective $NO_{2}$ gas sensor based on $WO_{3}$ nanoplates", Sens. Actuators, B, Vol. 240, pp. 426-433, 2017. https://doi.org/10.1016/j.snb.2016.08.177
  11. Y. Zhao, Z. C. Feng, and Y. Liang, "Pulsed laser deposition of $WO_{3}$-base film for $NO_{2}$ gas sensor application", Sens. Actuators, B, Vol. 66, No.1-3, pp. 171-173, 2000. https://doi.org/10.1016/S0925-4005(00)00326-9
  12. C. J. Jin, T. Yamazaki, Y. Shirai, T. Yoshizawa, T. Kikuta, N. Nakatani, and H. Takeda, "Dependence of $NO_{2}$ gas sensitivity of $WO_{3}$ sputtered films on film density", Thin Solid Films, Vol. 474, No. 1-2, pp. 255-260, 2005. https://doi.org/10.1016/j.tsf.2004.09.009
  13. Y. Hong, S. Hong, D. Jang, Y. Jeong, M. Wu, G. Jung, J. H. Bae, J. S. Kim, K. S. Chang, C. B. Jeong, C. S. Hwang, B. G. Park, and J. H. Lee, "A Si FET-type Gas Sensor with Pulse-driven Localized Micro-heater for Low Power Consumption", Proc. of IEEE Int. Electron Devices Meet., pp. 12.6.1-4, San Francisco, US, 2018.
  14. S. Hong, Y. Hong, Y. Jeong, G. Jung, W. Shin, J. Park, J. K. Lee, D. Jang, J. H. Bae, and J. H. Lee, "Improved CO gas detection of Si MOSFET gas sensor with catalytic Pt decoration and pre-bias effect", Sens. Actuators, B, Vol. 300, pp. 127040, 2019. https://doi.org/10.1016/j.snb.2019.127040
  15. P. C. Jong, G. C. M. Meijer, and A. H. M. Roermund, "A $300^{\circ}C$ Dynamic-Feedback Instrumentation Amplifier", IEEE J. Solid State Circuits, Vol. 33, pp. 1999-2009, 1998. https://doi.org/10.1109/4.735541
  16. L. G. Teoh, Y. M. Hon, J. Shieh, W. H. Lai, and M. H. Hon, "Sensitivity properties of a novel $NO_{2}$ gas sensor based on mesoporous $WO_{3}$ thin film", Sens. Actuators, B, Vol. 96, No.1-2, pp. 219-225, 2003. https://doi.org/10.1016/S0925-4005(03)00528-8
  17. H. Xia, Y. Wang, F. Kong, S. Wang, B. Zhu, X. Guo, J. Zhang, Y. Wang, and S. Wu, "Au-doped $WO_{3}$-based sensor for $NO_{2}$ detection at low operating temperature", Sens. Actuators, B, Vol. 134, No. 1, pp. 133-139, 2008. https://doi.org/10.1016/j.snb.2008.04.018
  18. M. A. Chougule, S. Sen, and V. B. Patil, "Fabrication of nanostructured ZnO thin film sensor for $NO_{2}$ monitoring", Ceram. Int., Vol. 38, No. 4, pp. 2685-2692, 2012. https://doi.org/10.1016/j.ceramint.2011.11.036
  19. C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, "Metal oxide gas sensors: sensitivity and influencing factors", Sensors, Vol. 10, No. 3, pp. 2088-2106, 2010. https://doi.org/10.3390/s100302088
  20. Y. A. Lee, S. S. Kalanur, G. Shim, J. Park, and H. Seo, "Highly sensitive gasochromic $H_{2}$ sensing by nano-columnar $WO_{3}$-Pd films with surface moisture", Sens. Actuators, B, Vol. 238, pp. 111-119, 2017. https://doi.org/10.1016/j.snb.2016.07.058
  21. M. Hu, J. Zeng, W. Wang, H. Chen, and Y. Qin, "Porous $WO_{3}$ from anodized sputtered tungsten thin films for $NO_{2}$ detection", Appl. Surf. Sci., Vol. 258, No. 3, pp. 1062-1068, 2011 https://doi.org/10.1016/j.apsusc.2011.09.002
  22. J. Zeng, M. Hu, W. Wang, H. Chen, and Y. Qin, "$NO_{2}$-sensing properties of porous $WO_{3}$ gas sensor based on anodized sputtered tungsten thin film", Sens. Actuators, B, Vol. 161, No. 1, pp. 447-452, 2012. https://doi.org/10.1016/j.snb.2011.10.059