DOI QR코드

DOI QR Code

ZnO양자점 기반 센서의 초고감도 수소 검지 특성

Ultra Sensitive Detection of H2 in ZnO QD-based Sensors

  • 이현숙 (연세대학교 신소재공학과) ;
  • 김원경 (경북대학교 나노소재공학부) ;
  • 이우영 (연세대학교 신소재공학과)
  • Lee, Hyun-Sook (Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Wonkyung (School of Nano & Materials Science and Engineering, Kyungpook National University) ;
  • Lee, Wooyoung (Department of Materials Science and Engineering, Yonsei University)
  • 투고 : 2020.03.24
  • 심사 : 2020.03.26
  • 발행 : 2020.03.31

초록

Interest and demand for hydrogen sensors are increasing in the field of H2 leakage detection during storage/transport/use and detection of H2 dissolved in transformer oil for safety issues as well as in the field of breath analysis for non-invasively diagnosing a number of disease states for a healthy life. In this study, various ZnO-based sensors were synthesized by controlling the reduction in crystallite size, decoration of Pt nanoparticles, doping of electron donating atoms, and doping of various atoms with different ionic radii. The sensing response of the various prepared ZnO-based nanoparticles and quantum dots (QDs) for 10 ppm H2 was investigated. Among the samples, the smallest-sized (3.5 nm) In3+-doped ZnO QDs showed the best sensing response, which is superior to those in previously reported hydrogen sensors based on semiconducting metal oxides. The higher sensing response of In-doped ZnO QDs is attributed to the synergic effects of the increased number of oxygen vacancies, higher optical band gap, and larger specific surface area.

키워드

참고문헌

  1. G. Korotcenkov, S. D. Han, and J. R. Stetter, "Review of electrochemical hydrogen sensors", Chem. Rev., Vol. 109, No. 3, pp. 1402-1433, 2009. https://doi.org/10.1021/cr800339k
  2. H. C. Sun, Y. C. Huang, and C. M. Huang, "A review of dissolved gas analysis in power transformers", Energy Procedia, Vol. 14, pp. 1220-1225, 2012. https://doi.org/10.1016/j.egypro.2011.12.1079
  3. M. Wang, A. J. Vandermaar, and K. D. Srivastava, "Review of condition assessment of power transformers in service", IEEE Electr. Insul. Mag., Vol. 18, No. 6, pp. 12-25, 2002. https://doi.org/10.1109/MEI.2002.1161455
  4. J. A. Perman, S. Modler, R. G. Barr, and P. Rosenthal, "Fasting breath hydrogen concentration: Normal values and clinical application", Gastroenterology, Vol. 87, No. 6, pp. 1358-1363, 1984. https://doi.org/10.1016/0016-5085(84)90204-X
  5. J. Dabritz, M. Muhlbauer, D. Domagk, N. Voos, G. Hennebohl, M. L. Siemer, and D. Foell, "Significance of hydrogen breath tests in children with suspected carbohydrate malabsorption", BMC Pediatr., Vol. 14, No. 59, pp. 1-9, 2014. https://doi.org/10.1186/1471-2431-14-1
  6. C. H. Han, D. W. Hong, I. J. Kim, J. Gwak, S. D. Han, and K. C. Singh, "Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor", Sens. Actuators B, Vol. 128, No. 1, pp. 320-325, 2007. https://doi.org/10.1016/j.snb.2007.06.025
  7. V. R. Katti, A. K. Debnath, S. C. Gadkari, S. K. Gupta, and V. C. Sahni, "Passivated thick film catalytic type $H_2$ sensor operating at low temperature", Sens. Actuators B, Vol. 84, No 2-3, pp. 219-225, 2002. https://doi.org/10.1016/S0925-4005(02)00028-X
  8. I. Simon and M. Arndt, "Thermal and gas-sensing properties of a micromachined thermal conductivity sensor for the detection of hydrogen in automotive applications", Sens. Actuators A, Vol. 97-98, pp. 104-108, 2002. https://doi.org/10.1016/S0924-4247(01)00825-1
  9. G. Jessop, "Katharometers", J. Sci. Instrum., Vol. 43, No. 11, pp. 777-782, 1966. https://doi.org/10.1088/0950-7671/43/11/301
  10. Y. Chao, S. Yao, W. J. Buttner, and J. R. Stetter, "Amperometric sensor for selective and stable hydrogen measurement", Sens. Actuators B, Vol. 106, No. 2, pp. 784-790, 2005. https://doi.org/10.1016/j.snb.2004.09.042
  11. R. C. Hughes and W. K. Schubert, "Thin films of Pd/Ni alloys for detection of high hydrogen concentrations", J. Appl. Phys., Vol. 71, No. 1, pp. 542-544, 1992. https://doi.org/10.1063/1.350646
  12. T. Xu, M. P. Zach, Z. L. Xiao, D. Rosenmann, U. Welp, W. K. Kwok, and G. W. Crabtree, "Self-assembled monolayerenhanced hydrogen sensing with ultrathin palladium films", Appl. Phys. Lett., Vol. 86, No. 20, pp. 203104(1)-203104(3), 2005. https://doi.org/10.1063/1.1929075
  13. D. R. Baselt, B. Fruberger, E. Klaassen, S. Cemalovic, C. L. Britton Jr., S. V. Patel, T. E. Mlsna, D. MCCorkle, and B. Warmack, "Design and performance of a microcantileverbased hydrogen sensor", Sens. Actuators B, Vol. 88, No. 2, pp. 120-131, 2003. https://doi.org/10.1016/S0925-4005(02)00315-5
  14. D. Iannuzzi, M Slaman, J. H. Rector, H. Schreuders, S. Deladi, and M. C. Elwenspoek, "A fiber-top cantilever for hydrogen detection", Sens. Actuators B, Vol. 121, No. 2, pp. 706-708, 2007. https://doi.org/10.1016/j.snb.2006.03.049
  15. S. Dong, F. Bai, J.F. Li, and D. Viehland, "Sound-resonance hydrogen sensor", Appl. Phys. Lett., Vol. 82, No. 25, pp. 4590-4592, 2003. https://doi.org/10.1063/1.1586994
  16. W. P. Jakubik, M. W. Urbaczyk, S. Kochowski, and J. Bodzenta, "Bilayer structure for hydrogen detection in a surface acoustic wave sensor system", Sens. Actuators B, Vol. 82, No. 2-3, pp. 265-271, 2002 https://doi.org/10.1016/S0925-4005(01)01061-9
  17. M. A. Butler, "Micromirror optical-fiber hydrogen sensor", Sens. Actuators B, Vol. 22, No. 2, pp. 142-145, 1994. https://doi.org/10.1016/0925-4005(94)87015-2
  18. S. Roy, C. Jacob, S. Basu, "Studies on Pd/3C-SiC Schottky junction hydrogen sensors at high temperature", Sens. Actuators B, Vol. 94, pp. 298-303, 2003. https://doi.org/10.1016/S0925-4005(03)00380-0
  19. R. Yoo, D. Lee, S. Cho, and W. Lee, "Doping effect on the sensing properties of ZnO nanoparticles for detection of 2-chloroethyl ethylsulfide as a mustard simulant", Sens. Actuators B, Vol. 254, pp. 1242-1248, 2018. https://doi.org/10.1016/j.snb.2017.07.084
  20. A. Koo, R. Yoo, S. P. Woo, H.-S. Lee, and W. Lee, "Enhanced acetone-sensing properties of Pt-decorated aldoped ZnO nanoparticles", Sens. Actuators B, Vol. 280, pp. 109-119, 2019. https://doi.org/10.1016/j.snb.2018.10.049
  21. M. S. Park, J. H. Lee, Y. Park, R. Yoo, S. Park, H. Jung, W. Kim, H.-S. Lee, and W. Lee, "Doping effects of ZnO quantum dots on the sensitive and selective detection of acetylene for dissolved-gas analysis applications of transformer oil", Sens. Actuators B, Vol. 299, pp. 126992(1)-126992(10), 2019.
  22. J. Zhao, W. Wang, Y. Liu, J. Ma, X. Li, Y. Du, and G. Lu, "Ordered mesoporous Pd/SnO2 synthesized by a nanocasting route for high hydrogen sensing performance". Sens. Actuators B, Vol. 160, No. 1, pp. 604-608, 2011. https://doi.org/10.1016/j.snb.2011.08.035
  23. T. Yamazaki, H. Okumura, C. Jin, A. Nakayama, T. Kikuta, and N. Nakatani, "Effect of density and thickness on H2-gas sensing property of sputtered SnO2 films", Vacuum, Vol. 77, No. 3, pp. 237-243, 2005. https://doi.org/10.1016/j.vacuum.2004.09.024
  24. Y. Shen, D. Wei, M. Li, S. Gao, C. Han, and B. Cui, "Microstructure and room-temperature H2 sensing properties of undoped and impurity-doped SnO2 nanowires", Chem. Lett., Vol. 42, No. 5, pp. 492-494, 2013. https://doi.org/10.1246/cl.130026
  25. M. H. Kim, B. Jang, W. Kim, and W. Lee, "Enhanced hydrogen sensing properties of Pd-coated SnO2 nanorod arrays in nitrogen and transformer oil", Sens. Actuators B, Vol. 283, pp. 890-896, 2019. https://doi.org/10.1016/j.snb.2018.12.063
  26. Q. A. Drmosh and Z. H. Yamani, "Hydrogen sensing properties of sputtered ZnO films decorated with Pt nanoparticles", Ceram. Int., Vol. 42, No. 10, pp. 12378-12384, 2016. https://doi.org/10.1016/j.ceramint.2016.05.011
  27. K. Hassan, A. Uddin, G. Chung, "Fast-response hydrogen sensors based on discrete Pt/Pd bimetallic ultra-thin films", Sens. Actuators B, Vol. 234, pp. 435-445, 2016 https://doi.org/10.1016/j.snb.2016.05.013
  28. K. Hassan, A. Uddin, F. Ullah, Y. Kim, and G. Chung, "Platinum/palladium bimetallic ultra-thin film decorated on a one dimensional ZnO nanorods array for use as fast response flexible hydrogen sensor", Mater. Lett., Vol. 176, pp. 232-236, 2016. https://doi.org/10.1016/j.matlet.2016.04.138
  29. K. Hassan and G. Chung, "Catalytically activated quantumsize Pt/Pd bimetallic core-shell nanoparticles decorated on ZnO nanorod clusters for accelerated hydrogen gas detection", Sens. Actuators B, Vol. 239, pp. 824-833, 2017. https://doi.org/10.1016/j.snb.2016.08.084
  30. C. Zhang, A. Kanta, H. Yin, A. Boudiba, J. D'Haen, M. Olivier, and M. Debliquy, "H2 sensors based on WO3 thin films activated by platinum nanoparticles synthesized by electroless process", Int. J. Hydrog. Energy, Vol. 38, No. 6, pp. 2929-2935, 2013. https://doi.org/10.1016/j.ijhydene.2012.12.017
  31. S. Fardindoost, A. zad, F. Rahimi, and R. Ghasempou, "Pd doped WO3 films prepared by solegel process for hydrogen sensing", Int. J. Hydrog. Energy, Vol. 35, No. 2, pp. 854-860, 2010. https://doi.org/10.1016/j.ijhydene.2009.11.033
  32. A. Esfandiar, A. Irajizad, O Akhavan, S. Ghasemi, and M. Gholami, "Pd-WO3/reduced graphene oxide hierarchical nanostructures as efficient hydrogen gas sensors", Int. J. Hydrog. Energy, Vol. 39, No 15, pp. 8169-8179, 2014. https://doi.org/10.1016/j.ijhydene.2014.03.117
  33. X. Du, Y. Wang, Y. Mu, L. Gui, P. Wang, and Y. Tang, "A new highly selective H2 sensor based on TiO2/PtO-Pt duallayer films", Chem. Mater., Vol. 14, No. 9, pp. 3953-3957, 2002. https://doi.org/10.1021/cm0201293
  34. A. Esfandiar, S. Ghasemi, A. Irajizad, O. Akhavan, and M. R. Gholami, "The decoration of TiO2/reduced graphene oxide by Pd and Pt nanoparticles for hydrogen gas sensing", Int. J. Hydrog. Energy, Vol. 37, No. 20, pp. 15423-15432, 2012. https://doi.org/10.1016/j.ijhydene.2012.08.011
  35. S. Joo, I. Muto, and N. Hara, "Hydrogen gas sensor using Pt- and Pd-Added anodic TiO2 nanotube films", J. Electrochem. Soc., Vol. 157, No. 6, pp. 221-226, 2010.