DOI QR코드

DOI QR Code

Comparison of log-logistic and generalized extreme value distributions for predicted return level of earthquake

지진 재현수준 예측에 대한 로그-로지스틱 분포와 일반화 극단값 분포의 비교

  • Ko, Nak Gyeong (Department of Statistics, Pukyong National University) ;
  • Ha, Il Do (Department of Statistics, Pukyong National University) ;
  • Jang, Dae Heung (Department of Statistics, Pukyong National University)
  • Received : 2020.01.09
  • Accepted : 2020.01.11
  • Published : 2020.02.29

Abstract

Extreme value distributions have often been used for the analysis (e.g., prediction of return level) of data which are observed from natural disaster. By the extreme value theory, the block maxima asymptotically follow the generalized extreme value distribution as sample size increases; however, this may not hold in a small sample case. For solving this problem, this paper proposes the use of a log-logistic (LLG) distribution whose validity is evaluated through goodness-of-fit test and model selection. The proposed method is illustrated with data from annual maximum earthquake magnitudes of China. Here, we present the predicted return level and confidence interval according to each return period using LLG distribution.

자연 재해로부터 관측되는 자료를 대상으로 재현 수준 예측 등과 같은 자료 분석을 위해 일반화 극단값 분포(generalized extreme value)가 자주 사용되어 왔다. 표본 수가 충분히 큰 경우 연속적인 블록 최댓값들은 점근적으로 일반화 극단값 분포를 따른다. 하지만 소표본인 경우 이러한 사실은 성립되지 않을 수도 있다. 본 논문에서는 이러한 문제점을 해결하기 위해 모형 적합도 검정 및 모형 선택을 통해 로그-로지스틱(log-logistic) 분포의 사용을 제안한다. 하나의 예증으로서 중국 지진 자료를 대상으로 하여 로그-로지스틱 분포를 이용하여 재현 기간별 재현 수준 예측 및 신뢰구간을 제시한다.

Keywords

References

  1. Ashkar, F. and Mahdi, S. (2003). Comparison of two tting methods for the log-logistic distribution, Water Resources Research, 39, 1-8.
  2. Akhtar, M. T. and Khan, A. A. (2014). Log-logistic distribution as a reliability model: a Bayesian analysis, American Journal of Mathematics and Statistics, 4, 162-170.
  3. Bae, E., Kim, S. Y., and Kim, C. (2018). Extreme value theory based earthquake risk modelling and management, The Journal of Risk Management, 29, 1-24.
  4. Coles, S., Bawa, J., Trenner, L., and Dorazio, P. (2001). An Introduction to Statistical Modeling of Extreme Values, Springer, London.
  5. Fisher, R. A. and Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. In , Mathematical Proceedings of the Cambridge Philosophical Society, 24, 180-190. https://doi.org/10.1017/S0305004100015681
  6. Jenkinson, A. F. (1955). The frequency distribution of the annual maximum (or minimum) values of meteorological elements, Quarterly Journal of the Royal Meteorological Society, 81, 158-171. https://doi.org/10.1002/qj.49708134804
  7. Lee, J. J., Kim, N. H., Kwon, H. J., and Kim, Y. (2014). A Bayesian analysis of return level for extreme precipitation in Korea, Journal of the Korean Data and Information Science Society, 27, 947-958. https://doi.org/10.7465/jkdi.2016.27.4.947
  8. Nadarajah, S. and Choi, D. (2007). Maximum daily rainfall in South Korea, Journal of Earth System Science, 116, 311-320. https://doi.org/10.1007/s12040-007-0028-0
  9. Pisarenko, V. F., Sornette, D., and Rodkin, M. V. (2010). Distribution of maximum earthquake magnitudes in future time intervals: application to the seismicity of Japan (1923-2007). Earth, Planets and Space, 62, 567. https://doi.org/10.5047/eps.2010.06.003
  10. Ryu, S., Eom, E., Kwon, T., and Yoon, S. (2016). The estimation of CO concentration in Daegu-Gyeongbuk area using GEV distribution, Journal of the Korean Data and Information Science Society, 27, 1001-1012. https://doi.org/10.7465/jkdi.2016.27.4.1001