DOI QR코드

DOI QR Code

Behavior of grouped stud shear connectors between precast high-strength concrete slabs and steel beams

  • Fang, Zhuangcheng (School of Civil and Transportation Engineering, Guangdong Univ. of Technology, Guangzhou Higher Education Mega Center) ;
  • Jiang, Haibo (School of Civil and Transportation Engineering, Guangdong Univ. of Technology, Guangzhou Higher Education Mega Center) ;
  • Chen, Gongfa (School of Civil and Transportation Engineering, Guangdong Univ. of Technology, Guangzhou Higher Education Mega Center) ;
  • Dong, Xiaotong (School of Civil and Transportation Engineering, Guangdong Univ. of Technology, Guangzhou Higher Education Mega Center) ;
  • Shao, Tengfei (School of Civil and Transportation Engineering, Guangdong Univ. of Technology, Guangzhou Higher Education Mega Center)
  • 투고 : 2019.05.15
  • 심사 : 2020.02.17
  • 발행 : 2020.03.25

초록

This study aims to examine the interface shear behavior between precast high-strength concrete slabs with pockets and steel beam to achieve accelerated bridge construction (ABC). Twenty-six push-out specimens, with different stud height, stud diameter, stud arrangement, deck thickness, the infilling concrete strength in shear pocket (different types of concrete), steel fiber volume of the infilling concrete in shear pocket concrete and casting method, were tested in this investigation. Based on the experimental results, this study suggests that the larger stud diameter and higher strength concrete promoted the shear capacity and stiffness but with the losing of ductility. The addition of steel fiber in pocket concrete would promote the ductility effectively, but without apparent improvement of bearing capacity or even declining the initial stiffness of specimens. It can also be confirmed that the precast steel-concrete composite structure can be adopted in practice engineering, with an acceptable ductility (6.74 mm) and minor decline of stiffness (4.93%) and shear capacity (0.98%). Due to the inapplicability of current design provision, a more accurate model was proposed, which can be used for predicting the interface shear capacity well for specimens with wide ranges of the stud diameters (from13 mm to 30 mm) and the concrete strength (from 26 MPa to 200 MPa).

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China, Natural Science Foundation of Guangdong Province

The research presented was funded by National Natural Science Foundation of China (51778150), Science and Technology Planning Project of Guangzhou city (201804010422) in China, and Natural Science Foundation of Guangdong Province, China (2016A030313699). The authors gratefully acknowledge their generous supports and declare that they have no conflict of interests.

참고문헌

  1. AASHTO (2014), AASHTO LRFD bridge design specifications; (7th Ed.), American Association of State Highway and Transportation Officials, Washington D. C., USA.
  2. Alkaysi, M. and El-Tawil, S. (2017), "Factors affecting bond development between Ultra High Performance Concrete (UHPC) and steel bar reinforcement", Constr. Build. Mater., 144, 412-422. https://doi.org/10.1016/j.conbuildmat.2017.03.091.
  3. An, L. and Cederwall, K. (1996), "Push-out tests on studs in high strength and normal strength concrete", J. Constr. Steel Res., 36(1), 15-29. https://doi.org/10.1016/0143-974X(94)00036-H.
  4. ASTM (2011), C496/C496M-11, Standard test method for splitting tensile strength of cylindrical concrete specimens, ASTM International; West Conshohocken, PA, USA.
  5. ASTM (2014), C469/C469M-14, Standard test method for static modulus of elasticity and Poisson's ratio of concrete in compression, ASTM International; West Conshohocken, PA, USA.
  6. ASTM (2015), C1231/C1231M-15, Standard practice for use of unbond caps in determination of compressive strength of hardened cylindrical concrete specimens, ASTM International; West Conshohocken, PA, USA.
  7. Cao, J.H., Shao, X.D., Deng, L. and Gan, Y.D. (2017), "Static and fatigue behavior of short-headed studs embedded in a thin ultrahighperformance concrete layer", J. Bridge Eng., 22(5), 04017005. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001031.
  8. Chu, T.H.V., Bui, D.V., Le, V.P.N., Kim, I.T., Ahn, J.H. and Dao, D.K. (2016), "Shear resistance behaviors of a newly puzzle shape of crestbond rib shear connector: An experimental study", Steel Compos. Struct., 21(5), 1157-1182. https://doi.org/10.12989/scs.2016.21.5.1157.
  9. Classen, M. and Hegger, J. (2018), "Shear-slip behaviour and ductility of composite dowel connectors with pry-out failure", Eng. Struct., 150, 428-37. https://doi.org/10.1016/j.engstruct.2017.07.065.
  10. Eurocode 4 (2005), Design of composite steel and concrete structure: Part 2: General rules for bridge, European Committee for Standardization (CEN); Brussels, Belgium.
  11. Fanaie, N., Esfahani, F.G. and Soroushnia, S. (2015), "Analytical study of composite beams with different arrangements of channel shear connectors", Steel Compos. Struct., 19(2), 485-501. https://doi.org/10.12989/scs.2015.19.2.485.
  12. Fang, Z.C., Jiang, H.B. Liu, A.R., Feng, J.H. and Chen, Y. (2018), "Horizontal shear behaviors of normal weight and lightweight concrete composite T-beams", Int. J. Concr. Struct. M., 12(1), 15-24. https://doi.org/10.1186/s40069-018-0274-3.
  13. Gattesco, N. and Giuriani, E. (1996), "Experimental study on stud shear connectors subjected to cyclic loading", J. Constr. Steel Res., 38(1), 1-21. https://doi.org/10.1016/0143-974X(96)00007-7.
  14. GB 50017 (2003), Code for design of steel structures, China Planning Press; Beijing, PR China minister of China. GB 50017-2003: China Planning Press, 2003.
  15. Han, Q.H., Wang, Y.H., Xu, J. and Xing, Y. (2015), "Static behavior of stud shear connectors in elastic concrete-steel composite beams", J. Constr. Steel Res., 113, 115-126. https://doi.org/10.1016/j.jcsr.2015.06.006.
  16. JSCE (2007), Standard specification for steel and composite structures (design edition), Committee of steel structure; Japan.
  17. Ju, X.C. and Zeng, Z.B. (2015), "Study on uplift performance of stud connector in steel-concrete composite structures", Steel Compos. Struct., 18(5), 1279-1290. https://doi.org/10.12989/scs.2015.18.5.1279.
  18. Kim, J.S., Kwark, J., Joh, C., Yoo, S.W. and Lee, K.C. (2015), "Headed stud shear connector for thin ultrahigh-performance concrete bridge deck", J. Constr. Steel Res., 108, 23-30. https://doi.org/10.1016/j.jcsr.2015.02.001.
  19. Kim, S.H., Choi, K.T., Park, S.J., Park, S.M. and Jung, C.Y. (2013), "Experimental shear resistance evaluation of Y-Type perfobond rib shear connector", J. Constr. Steel Res., 82, 1-18. https://doi.org/10.1016/j.jcsr.2012.12.001.
  20. Kim, S.H., Jung, C.Y. and Ahn, J.H. (2011), "Ultimate strength of composite structure with different degrees of shear connection", Steel Compos. Struct., 11(5), 375-390. https://doi.org/10.12989/scs.2011.11.5.375.
  21. Kim, K.S., Han, O., Gombosuren, M. and Kim, S.H. (2019), "Numerical simulation of Y-type perfobond rib shear connectors using finite element analysis", Steel Compos. Struct., 31(1), 53-67. https://doi.org/10.12989/scs.2019.31.1.053.
  22. Lam, D. (2008), "Capacities of headed stud shear connectors in composite steel beams with precast hollowcore slabs", J. Constr. Steel Res., 63(9), 1160-1174. https://doi.org/10.1016/j.jcsr.2006.11.012.
  23. Lam, D. and El-Lobody, E. (2005), "Behavior of headed stud shear connectors in composite beam", J Struct. Eng., 131(1), 96-107. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:1(96).
  24. Lee, P.G., Shim, C.S. and Chang, S.P. (2005), "Static and fatigue behavior of large stud shear connectors for steel-concrete composite bridges", J. Constr. Steel Res., 61, 1270-1285. https://doi.org/10.1016/j.jcsr.2005.01.007.
  25. Lee, Y.H., Kim, M.S., Kim, H. and Kim, D.J. (2014), "Shear resistance of stud connectors in high strength concrete", Steel Compos. Struct., 52(4), 647-661. https://doi.org/10.12989/sem.2014.52.4.647.
  26. Liu, X.P., Bradford, M.A. Dist. and Lee, M.S.S. (2015), "Behavior of high-strength friction-grip bolted shear connectors in sustainable composite beams", J. Bridge Eng., 141(6), 04014149. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001090.
  27. Liu, Y., and Alkhatib, A. (2013), "Experimental study of static behaviour of stud shear connectors", Can. J. Civil Eng., 40(9), 909-916. https://doi.org/10.1139/cjce-2012-0489.
  28. Loh, H., Uy, B. and Bradford, M. (2004), "The effects of partial shear connection in the hogging moment regions of composite beams, Part I-Experimental study", J. Constr. Steel Res., 60(6), 897-919. https://doi.org/10.1016/j.jcsr.2003.10.007.
  29. Luo, Y.B., Hoki, K., Hayashi, K. and Nakashima, M. (2016), "Behavior and strength of headed stud-SFRCC shear connection. II: Strength evaluation", J Struct. Eng., 142, 04015113. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001372.
  30. Machacek, J. and Studnicka, J. (2002), "Perforated shear connectors", Steel Compos. Struct., 2(1), 51-66. https://doi.org/10.12989/scs.2002.2.1.051.
  31. Mazoz, A., Benanane, A. and Titoum, M. (2013), "Push-out tests on a new shear connector of I-shape", Int. J. Steel Struct., 13(3), 519-28. https://doi.org/10.1007/s13296-013-3011-4.
  32. Milosavljevic, B., Milicevic, I., Pavlovic, M. and Spremic, M. (2018), "Static behaviour of bolted shear connectors with mechanical coupler embedded in concrete", Steel Compos. Struct., 29(2), 257-272. https://doi.org/10.12989/scs.2018.29.2.257.
  33. Noel, M., Wahab, N. and Soudki, K. (2016), "Experimental investigation of connection details for precast deck panels on concrete girders in composite deck construction", Eng. Struct., 106, 15-24. https://doi.org/10.1016/j.engstruct.2015.10.002.
  34. Paknahad, M., Shariati, M., Sedghi, Y., Bazzaz, M. and Khorami, M. (2018), "Shear capacity equation for channel shear connectors in steel-concrete composite beams", Steel Compos. Struct., 28(4), 483-494. https://doi.org/10.12989/scs.2018.28.4.483.
  35. Pavlovic, M., Markovic, Z., Veljkovic, M. and Buđevac, D. (2013), "Bolted shear connectors vs. headed studs behaviour in push-out tests", J. Constr. Steel Res., 88, 134-149. https://doi.org/10.1016/j.jcsr.2013.05.003.
  36. Qi, J.N., Wang, J.Q., Li, M. and Chen, L.L. (2017), "Shear capacity of stud shear connectors with initial damage: Experiment, FEM model and theoretical formulation", Steel Compos. Struct., 25(1), 79-92. https://doi.org/10.12989/scs.2017.25.1.079.
  37. Shariati, M., Sulong, N.H.R., Suhatril, M., Shariati, A., Khanouki, M.M.A. and Sinaei, H. (2012), "Behaviour of C-shaped angle shear connectors under monotonic and fully reversed cyclic loading: an experimental study", Mater. Design, 41, 67-73. https://doi.org/10.1016/j.matdes.2012.04.039.
  38. Shim, C.S., Lee, P.G. and Chang, S.P. (2001), "Design of shear connection in composite steel and concrete bridges with precast decks", J. Constr. Steel Res., 57(3), 203-219. https://doi.org/10.1016/S0143-974X(00)00018-3.
  39. Shim, C.S., Lee, P.G. and Yoon, T.Y. (2004), "Static behavior of large stud shear connectors", Eng. Struct., 26(12), 1853-1860. https://doi.org/10.1016/j.engstruct.2004.07.011.
  40. Spremic, M., Markovic, Z., Veljkovic, M., and Budjevac, D (2013), "Push-out experiments of headed shear studs in group arragement", Adv. Steel Constr., 9, 139-60. https://doi.org/10.18057/IJASC.2013.9.2.4
  41. Su, Q.T., Yang, G.T. and Bradford, M.A. (2014), "Static behaviour of multi-row stud shear connectors in high- strength concrete", Steel Compos. Struct., 17(6), 967-980. https://doi.org/10.12989/scs.2014.17.6.967.
  42. Wang, J.Q., Xu Q.Z., Yao, Y.M., Qi, J.N. and Xiu, H.L. (2018a), "Static behavior of grouped large headed stud-UHPC shear connectors in composite structures", Compos. Struct., 206, 202-14. https://doi.org/10.1016/j.compstruct.2018.08.038.
  43. Wang, X.W., Zhu, B., Cui, S.A. and Lui, E.M. (2018b), "Experimental Research on PBL Connectors Considering the Effects of Concrete Stress State and Other Connection Parameters", J. Bridge Eng., 23(1), 04017125. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001158.
  44. Xu, C. and Sugiura, K. (2013), "FEM analysis on failure development of group studs shear connector under effects of concrete strength and stud dimension", Eng. Fail. Anal., 35, 343-354. https://doi.org/10.1016/j.engfailanal.2013.02.023.
  45. Xu, C. and Sugiura, K. (2014), "Analytical investigation on failure development of group studs shear connector in push-out specimen under biaxial load action", Eng. Fail. Anal., 37, 75-85. https://doi.org/10.1016/j.engfailanal.2013.11.010.
  46. Xu, C., Su, Q.T. and Masuya, H. (2017a), "Static and fatigue performance of stud shear connector in steel fiber reinforced concrete", Steel Compos. Struct., 24(4), 467-479. https://doi.org/10.12989/scs.2017.24.4.467.
  47. Xu, C., Su, Q.T. and Sugiura, K. (2017b), "Mechanism study on the low cycle fatigue behavior of group studs shear connectors in steelconcrete composite bridges", J. Constr. Steel Res., 138, 196-207. https://doi.org/10.1016/j.jcsr.2017.07.006.
  48. Xu, C., Sugiura, K., Wu, C. and Su, Q.T. (2012), "Parametrical static analysis on group studs with typical push-out tests", J. Constr. Steel Res., 72, 84-96. https://doi.org/10.1016/j.jcsr.2011.10.029.
  49. Xu, X.Q., Liu, Y.Q. and He, J. (2014), "Study on mechanical behavior of rubber-sleeved studs for steel and concrete composite structures", Constr. Build. Mater., 53, 533-546. https://doi.org/10.1016/j.conbuildmat.2013.12.011.
  50. Xue, D.Y., Liu, Y.Q., Yu, Z. and He, J. (2012), "Static behavior of multi-stud shear connectors for steel-concrete composite bridge", J. Constr. Steel Res., 74, 1-7. https://doi.org/10.1016/j.jcsr.2011.09.017.
  51. Yang, F., Liu, Y.Q., Jiang, Z.B. and Xin, H.H. (2018), "Shear performance of a novel demountable steel-concrete bolted connector under static push-out tests", Eng. Struct., 160, 133-146. https://doi.org/10.1016/j.engstruct.2018.01.005.
  52. Zheng, S.J., Liu, Y.Q., Yoda, T. and Lin, W.W. (2016a), "Parametric study on shear capacity of circular-hole and long-hole perfobond shear connector", J. Constr. Steel Res., 117, 64-80. https://doi.org/10.1016/j.jcsr.2015.09.012.
  53. Zheng, S.J., Liu, Y.Q., Yoda, T. and Lin, W.W. (2016b), "Shear behavior and analytical model of perfobond connectors", Steel Compos. Struct., 20(1), 71-89. https://doi.org/10.12989/scs.2016.20.1.071.
  54. Zhu, Z.H., Zhang, L., Bai, Y., Ding, F.X., Liu, J. and Zhou, Z. (2016), "Mechanical performance of shear studs and application in steelconcrete composite beams", J. Cent. South Univ., 23(10), 2676-2687. https://doi.org/10.1007/s11771-016-3329-0.