DOI QR코드

DOI QR Code

Influence of Applying Loads on Subacromial Space Interval during Shoulder Abduction in Young Men

젊은 남성에서 부하 적용이 어깨 벌림 동안 봉우리밑 공간 간격에 미치는 영향

  • Park, Kanghui (Professor, Dept. of Physical Therapy, Dong-ju College) ;
  • Park, Hankyu (Professor, Dept. of Physical Therapy, Dong-ju College) ;
  • Park, Sookyoung (Professor, Dept. of Physical Therapy, Woosong University)
  • 박강희 (동주대학교 물리치료과 교수) ;
  • 박한규 (동주대학교 물리치료과 교수) ;
  • 박수경 (우송대학교 물리치료학과 교수)
  • Received : 2020.02.13
  • Accepted : 2020.02.28
  • Published : 2020.03.31

Abstract

Purpose : This study was performed to comparison of distance change of subacromial space according to shoulder abduction angle in loaded and unloaded conditions. Methods : The subjects were 20 male college students, and the subacromial space was measured using an ultrasound diagnostic apparatus. The participants shoulder abduction was measured during each shoulder resting position and 45 ° abduction with loads of 1 kg, 2 kg, 3 kg. The collected data were analyzed by a paired t-test and repeated measure ANOVA with the SPSS (Ver. 22) program. Results : The subacromial space showed statistically significant decreased in 45 ° abduction than resting position (p<.001). All the subacromial space increased during the according to loads (1 kg, 2 kg, 3 kg) at the resting position but at 45 ° abduction showed statistically significant decreased as the load increases (p<.05). Also, subacromial space showed significant changes in the 2kg, 3kg compared with the 0kg loads. Conclusion : These results identified that shoulder abduction angle and load were related to subacromial space. When resting position, subacromial space is larger at loads than unload. As the load and shoulder abduction angle increase, subacromial space is reduced compared to resting.

Keywords

<h1>!`. ��`</h1> <p>Ŵ�h���i̴(shoulder complex)�� ���, Ŵ�h�, �Wǥ�, ��ǥ� � �´ư���\ �l�1��p �$������(glenohumeral joint), ��ǥ�Wǥ��(sternoclavicular joint), � ư���Wǥ��(acromoiclavicular joint), Ŵ�h�´��(scapulothoracic joint)�D ��1�X�� ��̴��� �ǥ ��@ ����ټ���| ��IJ�(Terry, 2000). �t � �$�������@ ����8���X �p ���]�t�� ���$���X ŕ�@ �$���t���t�� ��1� ���\ �l�p��<�\ ���H��1�D ����� Lj��(Cameron, 2017).</p> <p>Ŵ�h���X �H��1�@ �|�����\��Ǒ��� Ŵ�h���X ����DŽ�t �|Ŵ�� �L ��ư �Ɣ�X�p, �t�� Ŵ�h���i̴�| �l�1�X�� Lj�� ���X �����X ���8ǑƩ�� ���!�X �p��� �X�t �̴�Ŵ�IJ�(Park &amp; Lee, 2017). Ŵ�h���X �H��1�D �̴��0 ��t �$�������t �����t�� ���H Ŵ�h� ������ Lj�� �H��T ���!���t �\�1�T�Ŵ ��, ��� �H��1�t �̴�Ŵ���� ���(Labriola, 2005). ҹ׈, �̹��`���@ ���x ǐ�8��� Ŵ�h�� ���� ������� � ���| ǘ ����X�� ���`�D �X��, ��D �����| �L ���$���� ����8�� ���t��� �U͕�X ט�D ������ �0����x �H��1�D ����X�p Ŵ�h�8�����X ǑƩ�� �X�t �ʽ�<�\ ��ݴ�� ט�� ֨�(��<�\ ��m�X�� �Ɣ�\ ���`�D �\��(Bang &amp; Lee, 2016). �̹��`���X ��� ���ܬ ����X�t Ŵ�h�� ���� �� ����8��� �ʽ�<�\ ����� �����| �̴� � Lj��(Su ��, 2009).</p> <p>�$�������X ���� �� ��ƴ������Y�@ ��� �8����� �l�t�0�@ ���D�����t �������� ���. �t���Y��x �l�p�| ���X�D �L, �$�������X ����8���� ���$���X �8�\ �����X 2�0�X �l�0�| ��IJ�. ���} �l�t�0�@ ���D���� ��Ǒ�D ǘ �Չ�X�� ���\���t, ������ Lj�� �l�p�<���t �|�t�� ��� ����t ��ݴ��(Mihata ��, 2015).</p> <p>Ŵ�h ͩ��ɝ�ĭp�@ Ŵ�h���X �}ט�� �����D �X�� ���H � ư��� ����t ȁ�D���� �0�| �t ����D ������� �����p�����t �U��Ŵ���� ���� ��(� ���X�t�p, ���\ �̹��`���X ט�, � ư�����a���8���@ ���P������X �4��� ט��� �0����x �U��� ���0�t ����Ŵ ��ɝ�t ����X�� ���(Garving ��, 2017; Choo, 2019). ��\, �t���@ Ŵ�h�X ѵɝ�D ������ ����ټ�� ��\, ���! �}ɝ � ����DŽ�� �8��| ����X�� �|�����\��Ǒ�t Ŵ�$���� � Lj��(Ardic ��, 2006).</p> <p>� ư��� ����@ Ŵ�h�� ư�� �^ 1/3 �ǥǐ���@ ����8�� ���t�\ ��X��� Ŵ�h� � ư��-��� ���t�p��(acromial-humeral distance; AHD)�| ѵ�t �U�x�` � Lj�<�p(Cholewinski ��, 2008), �t ����@ ט��� �$�\���8�ȸ\ �D���8 Lj��. �$�\���8�Ȳ� ���X ���`�D �X�� Ŵ�h���D �����| �L ���0�� �X�t ��ݴ�� �����D �\���T�X�� �̹��`���� � ư���X �����D ��)�X�� ���`�D �\��(Luque-Suarez ��, 2013). ���찘 � ư��� ����t ȁ�D���� ��t �����p�� �����D ��)�X�� ���t Ŵ�$�� �� � Lj��(Michener ��, 2015).</p> <p>Ŵ�h���X ���X�D ��)�X�� �IJ��X�0 ��t � ư����� �p���| �U�x�X�� �t�t�X�� ���t �Ɣ�X�p �|�����\��Ǒ��� Ŵ�h�� ���� ƴ�� �� ���� ��Ĭ ɝ��X�� ���X�X �Ʃ�t ɝ��h�� �0�| � ư��� ����X �p��� ���T� � Lj��. ���찘 Ŵ�h���D �ɬ�X�0 ��t ��L� �IJ��0�| ѵ�t � ư��� ����X �p���| �U�x�\ ���l� ���q�\ ����t��.</p> <p>�0�|� �� ���l����� ��L� ����D �tƩ�X�� Ŵ�h�� ���� ƴ�� �� ���X�X �Ʃ�t Ŵ�h���X ���� ���H � ư��� ��� ����X �(�t�| �L�D����ǐ �X���.</p> <h1>!a. ���l�)��</h1> <h2>1. ���l ���</h2> <p>�� ���l�X ���ǐ�� ���l�X ����� �)���� ��t �$���D ���� ��� �� ���l�� �8���X���| �׌ ���� ��Ǭ�X D��Y�P �<���X�̬� Ǭ�Y�� 20��(���t: 22.60&plusmn;3.56�8, ��ǥ: 174.71&plusmn;6.23 3�, ̴�: 74.75&plusmn;6.23 3�)�D ����<�\ �X���. ���ǐ � ��p�t�@ ���p Ŵ�h���X�X ���x�� �� �� �X�� �����t �Ƭ� Ŵ�h�� ��ټ���X ��\�t �Ʋ� ǐ�\ � ��X���. ��x�p�t�<�\ �ଽ�Y��x �8�� Lj�p�� ��X �0��� ѵɝ�t LjŴ Ŵ�h�| �����t���p ��Ӹ�\ ǐ�� ��x�X���. ���l ���ǐ���X ��̴� ҹ�1�@ Table 1�� ���.</p> <p><strong>Table 1. General characteristics of subjects (n=20)</strong></p> <p><strong><sup>a</sup>Mean&plusmn;SD</strong></p> <h2>2. ���� �$��</h2> <p>�� ���l�X �$�IJ� �������l�\� ����!� ���|-Ɣ�x�$��(single-factor designs for repeated groups)�t��. Ŵ�h�� ���� �� ����@ ���X� ɝ��h�� �0�| Ŵ�h� � ư��� ����X ���T�| ��L� �IJ��0�| ��Ʃ�X�� �!��X���. �!� ǐ�8�� �Xǐ�� �I�@ ������� ̙͔�X ��,�D � ���X�� ��D ���ǐ�8�\ ��Ŵ�(�� �� ��� �@ ��t�D �Q���X�� �X���. � ư��� ����@ Ŵ�h���X �H� �� ǐ�8(0 &deg; ����)�@ 45 &deg; ���� ǐ�8��� �!��X��<�p(Jee ��, 2011), 1 3�, 2 3�, 3 3� �4���X �D�9�D ǡ�� ���|�\ �)���<�\ �!��X���(Longo ��, 2017). ��X ���� ��IJ� �����Ĺ| ��Ʃ�X���. ���X�� �0�x ���<�\�| �\���T�X�0 ��t �4��� �� �L�Ȳ� 1��� �4���D �X��<�p �!���X �$�( ����| ��t�0 ��t ���� �!��@ 3֌ �!��X��� �����X �ɭ���D ��Ʃ�X���.</p> <h2>3. �!��ĭl � �!��)��</h2> <p>� ư��� ����X �p�� �!��D ��t ��L� ���ǥ�X(Veneu 50, GE Healthcare, UK)�| ��Ʃ�X���. ��L� �!� ��X�� ����@ Ŵ�h� � ư�� ���t��� � ư�� ��L�t�� �����X�� �X�� � ư�� � �������� �}� ��ʽ�<�\ �� �X�� � ư��, �������X ט� � ��� �8��� ���t�� ����D ����X���. ��L� ������ � ư��� ����X �!��@ ��� �]�� � ư�� �] �������� �\���p���x Ŵ�h� � ư��-��� ���t �p��(acromiohumeral distance; AHD)�| �!��X���(Longo ��, 2017)(Fig 1).</p> <p><strong>Fig 1. Measurement of subacromial space. (A) Ultrasound (B) Ultrasound probe positioning acromion (C) The line the acromiohumeral distance(AHD) A: acromion; H: humeral; SS: supraspinatus</strong></p> <h2>4. ǐ��̘�� � ���</h2> <p>�� ���l�� �����D ѵ�t ��Ѵ ǐ�̹| ���ưƩ SPSS Ver. 22.0�D �tƩ�X�� ѵ��̘�� �X��<�p, ���� �m���X �!���@ �ɭ�(M)�� �\�Ӹ�((SD)�\ �������Ȳ�. Ŵ�h�� ���� �� ����� �0�x � ư��� ����X �p�� �(�t�| �L�D���0 ��t ��Q�\�� T-���(paired t-test)�� Ŵ�h������ �� ���X�X �(�t�� �0�x � ư��� ����X �p�� �(�t�| �L�D���0 ��t ����!� �������(repeated measure ANOVA)�D �����X���. ���X�X �(�t�� �0�x �!���X � �X�\ �(�t� Lj�� ��ư ���Ĭ�ɝ(Bonferroni ���)�D �����X���. ���� ѵ�� ����X � �X���@ p&lt;.05�\ �$��X���.</p> <h1>!b. ���l����</h1> <h2>1. Ŵ�h�� ���� ��� �(�t�� �0�x � ư��� ����X �p�� �D�P</h2> <p>Ŵ�h�� ���� ����� �0�x � ư��� ��� �p���X ���T�| �U�x�t �� ���� Table 2�@ ���. � ư��� ��� �p��� Ŵ�h���X �H� �� ǐ�8��� ���� 45 &deg; ���� �� ѵ����<�\ � �X�X�� ����X���(p&lt;.001)(Table 2).</p> <p><

References

  1. Ardic F, Kahraman Y, Kacar M, et al(2006). Shoulder impingement syndrome: relationships between clinical, functional, and radiologic findings. Am J Phys Med Rehabil, 85(1), 53-60. https://doi.org/10.1097/01.phm.0000179518.85484.53
  2. Bang HJ, Lee HJ(2016). Difference of early muscle strengthening exercises on pain, function and sleep quality for rotator cuff partial tear patients. J Korean Soc Integrative Med, 4(3), 1-15. https://doi.org/10.15268/ksim.2016.4.3.001
  3. Cameron KL, Mauntel TC, Owens BD(2017). The epidemiology of glenohumeral joint instability: incidence, burden, and long-term consequences. Sports Med Arthrosc Rev, 25(3), 144-149. https://doi.org/10.1097/JSA.0000000000000155
  4. Cholewinski JJ, Kusz DJ, Wojciechowski P, et al(2008). Ultrasound measurement of rotator cuff thickness and acromio-humeral distance in the diagnosis of subacromial impingement syndrome of the shoulder. Knee Surg Sports Traumatol Arthrosc, 16(4), 408-414. https://doi.org/10.1007/s00167-007-0443-4
  5. Choo YK(2019). Effects of mobilization with movement combined with exercise (EMWM) on ADH, ROM and functional performance in patients with impingement syndrome of the shoulder. J Korean Soc Integrative Med, 7(2), 153-163. https://doi.org/10.15268/KSIM.2019.7.2.153
  6. Garving C, Jakob S, Bauer I, et al(2017). Impingement syndrome of the shoulder. Dtsch Arztebl Int, 114(45), 765-776.
  7. Hong YT, Lee DY, Yu JH, et al(2015). Changes in the subacromial space according to the angle of shoulder abduction. Indian Journal of Science and Technology, 8(25), 1-6.
  8. Jee EM, Kim SY, Park JW(2011). Comparison of distance of subacromial space using ultrasonographic measurement on arm positions of shoulder injured patients. J Korean Soc Phys Med, 6(4), 397-406.
  9. Kalra N, Seitz AL, Boardman III ND, et al(2010). Effect of posture on acromiohumeral distance with arm elevation in subjects with and without rotator cuff disease using ultra sonography. J Orthop Sports Phys Ther, 40(10), 633-640. https://doi.org/10.2519/jospt.2010.3155
  10. Labriola JE, Lee TQ, Debski RE, et al(2005). Stability and instability of the glenohumeral joint: the role of shoulder muscles. J Shoulder Elbow Surg, 14(1), S32-38. https://doi.org/10.1016/j.jse.2004.09.014
  11. Longo S, Corradi A, Michielon G, et al(2017). Ultrasound evaluation of the subacromial space in healthy subjects performing three different positions of shoulder abduction in both loaded and unloaded conditions. Phys Ther Sport, 23, 105-112. https://doi.org/10.1016/j.ptsp.2016.08.007
  12. Luque-Suarez A, Navarro-Ledesma S, Petocz P, et al(2013). Short term effects of kinesiotaping on acromiohumeral distance in asymptomatic subjects: a randomised controlled trial. Man Ther, 18(6), 573-577. https://doi.org/10.1016/j.math.2013.06.002
  13. Michener LA, Subasi Yesilyaprak SS, Seitz AL, et al(2015). Supraspinatus tendon and subacromial space parameters measured on ultrasonographic imaging in subacromial impingement syndrome. Knee Surg Sports Traumatol Arthrosc, 23(2), 363-369. https://doi.org/10.1007/s00167-013-2542-8
  14. Mihata T, McGarry MH, Ishihara Y, et al(2015). Biomechanical analysis of articular-sided partial-thickness rotator cuff tear and repair. Am J Sports Med, 43(2), 439-446. https://doi.org/10.1177/0363546514560156
  15. Park MD, Lee SY(2017). The study of participation ratio on shoulder abductor muscle activities according to shoulder abduction angle. J Korean Soc Integrative Med, 5(2), 19-23. https://doi.org/10.15268/ksim.2017.5.2.019
  16. Su WR, Budoff JE, Luo ZP(2009). The effect of anterosuperior rotator cuff tears on glenohumeral translation. Arthroscopy, 25(3), 282-289. https://doi.org/10.1016/j.arthro.2008.10.005
  17. Terry GC, Chopp TM(2000). Functional anatomy of the shoulder. J Athl Train, 35(3), 248-255.