DOI QR코드

DOI QR Code

나노키토산의 식품분야에서의 이용

Application of nanochitosan in food industry: a review

  • 유지영 (고려대학교 일반대학원 생명공학과) ;
  • 고정아 (고려대학교 일반대학원 생명공학과) ;
  • 박현진 (고려대학교 일반대학원 생명공학과) ;
  • 김현우 (고려대학교 일반대학원 생명공학과)
  • Yu, Ji Young (Department of Biotechnology, College of Life Science and Biotechnology, Korea University) ;
  • Ko, Jung A (Department of Biotechnology, College of Life Science and Biotechnology, Korea University) ;
  • Park, Hyun Jin (Department of Biotechnology, College of Life Science and Biotechnology, Korea University) ;
  • Kim, Hyun Woo (Department of Biotechnology, College of Life Science and Biotechnology, Korea University)
  • 투고 : 2019.11.28
  • 심사 : 2020.01.29
  • 발행 : 2020.03.31

초록

Recently, chitosan has increased attention in commercial applications in the food industry in terms of its biocompatibility and nontoxicity. In particular, chitosan has been used as a good hosting material for producing nanoparticles due to its unique property of ionic gelation. Chitosan has disadvantages such as low solubility at physiological pH, causing the metabolism of core material in the intestine and gastric juice. To overcome these limitations, various chitosan derivatives such as carboxylated, thiolated, and acylated chitosan have been studied. This review focuses on the changes in the physicochemical properties of chitosan nanoparticles with the introduction of hydrophobic groups, the application of functional nanocapsules as coatings, and their applicability in the food sector. The physicochemical modification of chitosan is expected to be an attractive research field for the development of chitosan applications for food as well as for improving bioavailability in functional food.

키워드

참고문헌

  1. Ali A, Ahmed S. A review on chitosan and its nanocomposites in drug delivery. Int. J. Biol. Macromol., 109: 273-286 (2018) https://doi.org/10.1016/j.ijbiomac.2017.12.078
  2. Aranaz I, Mengíbar M, Harris R, Panos I, Miralles B, Acosta N, Galed G, Heras A. Functional characterization of chitin and chitosan. Curr Chem Biol. 3(2): 203-230 (2009) https://doi.org/10.2174/2212796810903020203
  3. Benech RO, Kheadr EE, Laridi R, Lacroix C, Fliss I.Inhibition of Listeria innocua in cheddar cheese by addition of nisin Z in liposomes or by in situ production in mixed culture. Appl. Environ. Microbiol. 68(8): 3683-3690 (2002) https://doi.org/10.1128/AEM.68.8.3683-3690.2002
  4. Bowman K, Leong KW. Chitosan nanoparticles for oral drug and gene delivery. Int. J. Nanomed. 1(2): 117 (2006) https://doi.org/10.2147/nano.2006.1.2.117
  5. Chen XG, Lee CM, Park HJ. O/W emulsification for the self-aggregation and nanoparticle formation of linoleic acid modified chitosan in the aqueous system. J. Agric. Food. Chem.51(10): 3135-3139 (2003) https://doi.org/10.1021/jf0208482
  6. Cho Y, Kim JT, Park HJ. Preparation, characterization, and protein loading properties of N‐acyl chitosan nanoparticles. J. Appl. Polym. Sci. 124(2): 1366-1371 (2012a) https://doi.org/10.1002/app.34931
  7. Cho Y, Kim JT, Park HJ. Size-controlled self-aggregated N-acyl chitosan nanoparticles as a vitamin C carrier. Carbohydr. Polym. 88(3): 1087-1092 (2012b) https://doi.org/10.1016/j.carbpol.2012.01.074
  8. Choi BK, Kim KY, Yoo YJ, Oh SJ, Choi JH, Kim CY. In vitro antimicrobial activity of a chitooligosaccharide mixture against Act inobacillusactinomycetemcomitans and Streptococcus mutans. Int. J. Antimicrob. Agents. 18(6): 553-557 (2001) https://doi.org/10.1016/S0924-8579(01)00434-4
  9. Chung YC, Su YP, Chen CC, Jia G, Wang HL, Wu JG, Lin JG. Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol. Sin. 25(7): 932-936 (2004)
  10. Datta S, Rameshbabu AP, Bankoti K, Maity PP, Das D, Pal S, Roy S, Sen R,Dhara S. Oleoyl-chitosan-based nanofiber mats impregnated with amniotic membrane derived stem cells for accelerated full-thickness excisional wound healing. ACS Biomater. Sci. Eng. 3(8): 1738-1749 (2017) https://doi.org/10.1021/acsbiomaterials.7b00189
  11. De Azeredo HM. Nanocomposites for food packaging applications. Food Res. Int., 42(9): 1240-1253 (2009) https://doi.org/10.1016/j.foodres.2009.03.019
  12. Desai KG, Park HJ. Preparation, characterization and protein loading of hexanoyl-modified chitosan nanoparticles. Drug Deliv. 13(5): 375-381 (2006) https://doi.org/10.1080/10717540500455991
  13. Eaton P, Fernandes JC, Pereira E, Pintado ME, Malcata FX. Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus. Ultramicroscopy 108(10): 1128-1134 (2008) https://doi.org/10.1016/j.ultramic.2008.04.015
  14. Elgadir MA, Uddin MS, Ferdosh S, Adam A, Chowdhury AJK, Sarker M ZI. Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: A review. J. Food Drug Anal., 23(4): 619-629 (2015) https://doi.org/10.1016/j.jfda.2014.10.008
  15. Erjavec V, Pavlica Z, Sentjurc M, Petelin M. In vivo study of liposomes as drug carriers to oral mucosa using EPR oximetry. Int. J. Pharm., 307(1): 1-8 (2006) https://doi.org/10.1016/j.ijpharm.2005.09.016
  16. Hasegawa H, Sung JH, Kitamura H, Matsumiya S, Uchiyama M, Lee MS, Yamaski K. International Symopsium on the Recent Pharmacological Evaluations of Natural Medicines (April 21, 1995); Interactions of triterpenoids from Panax (Araliaceae) and glycyrrhiza (Leguminosae) spp. with Mombrane Transporters. 생약학회지 26(2): 204-221 (1995)
  17. Izquierdo P, Esquena J, Tadros TF, Dederen C, Garcia MJ, Azemar N, Solans C. Formation and stability of nano-emulsions prepared using the phase inversion temperature method. Langmuir 18(1): 26-30 (2002) https://doi.org/10.1021/la010808c
  18. Jang, K. I., & Lee, H. G. Stability of chitosan nanoparticles for L-ascorbic acid during heat treatment in aqueous solution. J. Agric. Food. Chem. 56(6): 1936-1941 (2008) https://doi.org/10.1021/jf073385e
  19. Klinkesorn U, McClements DJ. Influence of chitosan on stability and lipase digestibility of lecithin-stabilized tuna oil-in-water emulsions. Food Chem. 114(4): 1308-1315 (2009) https://doi.org/10.1016/j.foodchem.2008.11.012
  20. Kong M, Chen XG, Liu CS, Liu CG, Meng XH, Yu LJ Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E. coli. Colloids Surf B Biointerfaces 65(2): 197-202 (2008a) https://doi.org/10.1016/j.colsurfb.2008.04.003
  21. Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int. J. Food. Microbiol. 144(1): 51-63 (2010) https://doi.org/10.1016/j.ijfoodmicro.2010.09.012
  22. Kong M, Chen XG, Xue YP, Liu CS, Yu LJ, Ji Q.X, Cha DS, Park HJ. Preparation and antibacterial activity of chitosan microshperes in a solid dispersing system. Front. Mater. Sci. China, 2(2): 214-220 (2008b) https://doi.org/10.1007/s11706-008-0036-2
  23. Kubota N, Eguchi Y. Facile preparation of water-soluble N-acetylated chitosan and molecular weight dependence of its water-solubility. Polym. J. 29(2): 123 (1997) https://doi.org/10.1295/polymj.29.123
  24. Kurita K, Kamiya M, Nishimura SI. Solubilization of a rigid polysaccharide: controlled partial N-acetylation of chitosan to develop solubility. Carbohydr. Polym. 16(1): 83-92 (1991) https://doi.org/10.1016/0144-8617(91)90072-K
  25. Laye C, McClements D. J, Weiss J. Formation of biopolymer-coated liposomes by electrostatic deposition of chitosan. J. Food Sci. 73(5): N7-N15 (2008) https://doi.org/10.1111/j.1750-3841.2008.00747.x
  26. Lee J.S, Yoon HS, Kim ES, Nam HS, & Lee HG. Chitosan Nanoparticle System for Improving Blood Circulation. Korean J. Food Sci. Tech. 48(2) : 153-158 (2016) https://doi.org/10.9721/KJFST.2016.48.2.153
  27. Lehr CM, Bouwstra JA, Schacht EH, Junginger HE. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int. J. Pharm. 78(1-3): 43-48 (1992) https://doi.org/10.1016/0378-5173(92)90353-4
  28. Leuba JL, Stossel P. Chitosan and other polyamines: antifungal activity and interaction with biological membranes. Chitin in nature and technology, Springer, Boston, MA : 215-222 (1986)
  29. Li J, Hwang IC, Chen X, Park HJ. Effects of chitosan coating on curcumin loaded nano-emulsion: Study on stability and in vitro digestibility. Food Hydrocoll.60: 138-147 (2016) https://doi.org/10.1016/j.foodhyd.2016.03.016
  30. Li YY, Chen XG, Liu CS, Cha DS, Park HJ, Lee C M. Effect of the molecular mass and degree of substitution of oleoylchitosan on the structure, rheological properties, and formation of nanoparticles. J. Agric. Food. Chem., 55(12): 4842-4847 (2007) https://doi.org/10.1021/jf062648m
  31. Liu CG, Desai KGH, Chen XG, Park HJ. Preparation and characterization of nanoparticles containing trypsin based on hydrophobically modified chitosan. J. Agric. Food. Chem., 53(5): 1728-1733 (2005) https://doi.org/10.1021/jf040304v
  32. Liu N, Park HJ. Chitosan-coated nanoliposome as vitamin E carrier. J. Microencapsul. 26(3): 235-242. https://doi.org/10.1080/02652040802273469
  33. Liu, N., & Park, H. J. (2010). Factors effect on the loading efficiency of Vitamin C loaded chitosan-coated nanoliposomes. Colloids Surf B Biointerfaces 76(1): 16-19 (2009)
  34. Muanprasat C, Chatsudthipong V. Chitosan oligosaccharide: Biological activities and potential therapeutic applications. Pharmacol. Ther. 170: 80-97 (2017) https://doi.org/10.1016/j.pharmthera.2016.10.013
  35. No HK, Meyers SP, Prinyawiwatkul W, Xu Z. Applications of chitosan for improvement of quality and shelf life of foods: a review. J. Food Sci. 72(5): R87-R100 (2007) https://doi.org/10.1111/j.1750-3841.2007.00383.x
  36. Osanai S, Nakamura K. Effects of complexation between liposome and poly (malic acid) on aggregation and leakage behaviour. Biomaterials 21(9): 867-876 (2000) https://doi.org/10.1016/S0142-9612(99)00210-0
  37. Parmar MM, Edwards K, Madden TD. Incorporation of bacterial membrane proteins into liposomes: factors influencing protein reconstitution. Biochim. Biophys. Acta Biomembr. 1421(1): 77-90 (1999) https://doi.org/10.1016/S0005-2736(99)00118-2
  38. Philippova OE, Korchagina EV, Volkov EV, Smirnov VA, Khokhlov AR, Rinaudo M. Aggregation of some water-soluble derivatives of chitin in aqueous solutions: Role of the degree of acetylation and effect of hydrogen bond breaker. Carbohydr. Polym. 87(1): 687-694 (2012) https://doi.org/10.1016/j.carbpol.2011.08.043
  39. Pittler MH, Abbot NC, Harkness EF, Ernst E. Randomized, double-blind trial of chitosan for body weight reduction. Eur. J. Clin. Nutr. 53(5): 379 (1999) https://doi.org/10.1038/sj.ejcn.1600733
  40. Raafat D, Sahl HG. Chitosan and its antimicrobial potential-a critical literature survey. Microb. Biotechnol. 2(2): 186-201 (2009) https://doi.org/10.1111/j.1751-7915.2008.00080.x
  41. Rhim JW, Park HM, Ha CS. Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 38(10-11): 1629-1652 (2013) https://doi.org/10.1016/j.progpolymsci.2013.05.008
  42. Shin GH, Chung SK, Kim JT, Joung HJ, Park HJ. Preparation of chitosan-coated nanoliposomes for improving the mucoadhesive property of curcumin using the ethanol injection method. J. Agric. Food. Chem., 61(46): 11119-11126 (2013) https://doi.org/10.1021/jf4035404
  43. Suzuki K, Mikami T, Okawa Y, Tokoro A, Suzuki S, Suzuki M.. Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydr. Res. 151: 403-408 (1986) https://doi.org/10.1016/S0008-6215(00)90359-8
  44. Takeuchi H, Yamamoto H, Niwa T, Hino T, Kawashima Y. Enteral absorption of insulin in rats from mucoadhesive chitosan-coated liposomes. Pharm. Res. 13(6): 896-901 (1996) https://doi.org/10.1023/A:1016009313548
  45. Wu Y, Yang W, Wang C, Hu J, Fu S. Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int. J. Pharm., 295(1-2): 235-245 (2005) https://doi.org/10.1016/j.ijpharm.2005.01.042
  46. Xing K, Chen XG, Kong M, Liu CS, Cha DS, Park HJ. Effect of oleoyl-chitosan nanoparticles as a novel antibacterial dispersion system on viability, membrane permeability and cell morphology of Escherichia coli and Staphylococcus aureus. Carbohydr. Polym., 76(1): 17-22 (2009) https://doi.org/10.1016/j.carbpol.2008.09.016
  47. Zacour AC, SILVA ME, CECON PR, BAMBIRRA EA, VIEIRA EC. Effect of dietary chitin on cholesterol absorption and metabolism in rats. J. Nutr. Sci. Vitaminol. 38(6): 609-613 (1992) https://doi.org/10.3177/jnsv.38.609
  48. 권익찬, 김광명, 김성원, 정혜선, 정서영. 키토산 나노 입자를 이용한 약물전달시스템. 고분자 과학과 기술15(4) : 396-401 (2004)
  49. 김양희. [특집-키토산(2)]키토산의 효능. 식품음료신문, Available from: https://www.thinkfood.co.kr/news/articleView.html?idxno=6011 (2003)
  50. 이대훈, 노홍균, 홍주헌. 분자량에 따른 수용성 키토산의 생리 활성. 한국키틴키토산학회지, 18(2): 99-104 (2013)
  51. 정경원, 나재운, 박준규. 다양한 소수성 물질이 개질된 키토산 나노입자의 약물전달체로서 응용성 고찰. 공업화학, 28(4): 404-409 (2017) https://doi.org/10.14478/ace.2017.1041