DOI QR코드

DOI QR Code

Characterization of Carboxylated Cellulose Nanocrystals from Recycled Fiberboard Fibers Using Ammonium Persulfate Oxidation

  • Received : 2020.01.09
  • Accepted : 2020.03.09
  • Published : 2020.03.25

Abstract

As a way of finding value-added materials from waste medium density fiberboard (MDF), this study characterized cellulose nanocrystals (CNCs) isolated by ammonium persulfate (APS) oxidation using recycled MDF fibers. Chemical composition of the recycled MDF fibers was done to quantify α-cellulose, hemicellulose, lignin, nitrogen, ash and extractives. The APS oxidation was performed at 60 ℃ for 16 h, followed by ultrasonication, which resulted in a CNC yield of 11%. Transmission electron microscope images showed that rod-like CNCs had an average length and diameter of 167±47 nm and 8.24±2.28 nm, respectively, which gave an aspect ratio of about 20. The conductometric titration of aqueous CNCs suspension resulted in a carboxyl content of 0.24 mmol/g and the degree of oxidation was 0.04. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy clearly showed the presence of carboxyl group on the CNCs prepared by the APS oxidation. The change of pH of the aqueous CNC suspension from 4 to 7 converted the carboxyl group to sodium carboxylate group. These results showed that the APS oxidation was facile and CNCs had a one-step preparation method, and thus suggested an optimization of the oxidation condition in future.

Keywords

References

  1. Aslan, D.I., Ozogul, B., Ceylan, S., Geyikci, F. 2018. Thermokinetic analysis and product characterization of Medium Density Fiberboard pyrolysis. Bioresource Technology 258: 105-110. https://doi.org/10.1016/j.biortech.2018.02.126
  2. Azambuja, R. da R., de Castro, V.G., Trianoski, R., Iwakiri, S. 2018. Recycling wood waste from construction and demolition to produce particleboards. Maderas: Ciencia y Tecnologia 20: 681-690.
  3. Bashar, M.M., Zhu, H., Yamamoto, S., Mitsuishi, M. 2019. Highly carboxylated and crystalline cellulose nanocrystals from jute fiber by facile ammonium persulfate oxidation. Cellulose 26: 3671-3684. https://doi.org/10.1007/s10570-019-02363-7
  4. Castro-Guerrero, C.F., Gray, D.G. 2014. Chiral nematic phase formation by aqueous suspensions of cellulose nanocrystals prepared by oxidation with ammonium persulfate. Cellulose 21: 2567-2577. https://doi.org/10.1007/s10570-014-0308-1
  5. Cheng, M., Qin, Z., Liu, Y., Qin, Y., Li, T., Chen, L., Zhu, M. 2014. Efficient extraction of carboxylated spherical cellulose nanocrystals with narrow distribution through hydrolysis of lyocell fibers by using ammonium persulfate as an oxidant. Journal of Materials Chemistry A 2: 251-258. https://doi.org/10.1039/C3TA13653A
  6. Cho, M., Park, B.D., Kadla, J.F. 2012. Characterization of electrospun nanofibers of cellulose nanowhisker/polyvinyl alcohol composites. Journal of the Korean Wood Science and Technology 40: 71-77. https://doi.org/10.5658/WOOD.2012.40.2.71
  7. Couret, L., Irle, M., Belloncle, C., Cathala, B. 2017. Extraction and characterization of cellulose nanocrystals from post-consumer wood fiberboard waste. Cellulose 24(5): 2125-2137. https://doi.org/10.1007/s10570-017-1252-7
  8. El Achaby, M., Kassab, Z., Aboulkas, A., Gaillard, C., Barakat, A. 2018. Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites. International Journal of Biological Macromolecules 106: 681-691. https://doi.org/10.1016/j.ijbiomac.2017.08.067
  9. Fortunati, E., Benincasa, P., Balestra, G.M., Luzi, F., Mazzaglia, A., Del Buono, D., Puglia, D., Torre, L. 2016. Revalorization of barley straw and husk as precursors for cellulose nanocrystals extraction and their effect on PVA-CH nanocomposites. Industrial Crops and Products 92: 201-217. https://doi.org/10.1016/j.indcrop.2016.07.047
  10. Foster, E.J., Moon, R.J., Agarwal, U.P., Bortner, M.J., Bras, J., Camarero-Espinosa, S., Chan, K.J., Clift, M.J.D., Cranston, E.D., Eichhorn, S.J., Fox, D.M., Hamad, W.Y., Heux, L., Jean, B., Korey, M., Nieh, W., Ong, K.J., Reid, M.S., Renneckar, S., Roberts, R., Shatkin, J.A., Simonsen, J., Stinson-Bagby, K., Wanasekara, N., Youngblood, J. 2018. Current characterization methods for cellulose nanomaterials. Chemical Society Reviews 47: 2609-2679. https://doi.org/10.1039/C6CS00895J
  11. Goh, K.Y., Ching, Y.C., Chuah, C.H., Abdullah, L.C., Liou, N.S. 2016. Individualization of microfibrillated celluloses from oil palm empty fruit bunch: comparative studies between acid hydrolysis and ammonium persulfate oxidation. Cellulose 23: 379-390. https://doi.org/10.1007/s10570-015-0812-y
  12. Gu, J., Hu, C., Zhong, R., Tu, D., Yun, H., Zhang, W., Leu, S.Y. 2017. Isolation of cellulose nanocrystals from medium density fiberboards. Carbohydrate Polymer 167: 70-78. https://doi.org/10.1016/j.carbpol.2017.02.110
  13. Gwon, J.G., Lee, D.B., Cho, H.J., Lee, S.Y. 2018. Preparation and characteristics of cellulose acetate-based nanocomposites reinforced with cellulose nanocrystals (CNCs). Journal of the Korean Wood Science and Technology. 46: 565-576. https://doi.org/10.5658/WOOD.2018.46.5.565
  14. Haeldermans, T., Claesen, J., Maggen, J., Carleer, R., Yperman, J., Adriaensens, P., Samyn, P., Vandamme, D., Cuypers, A., Vanreppelen, K., Schreurs, S. 2019. Microwave assisted and conventional pyrolysis of MDF: Characterization of the produced biochars. Journal of Analytical and Applied Pyrolysis 138: 218-230. https://doi.org/10.1016/j.jaap.2018.12.027
  15. Hafemann, E., Battisti, R., Marangoni, C., Machado, R.A.F. 2019. Valorization of royal palm tree agroindustrial waste by isolating cellulose nanocrystals. Carbohydrate Polymer 218: 188-198. https://doi.org/10.1016/j.carbpol.2019.04.086
  16. Han, J.S., Rowell, J.S. 2008. Chemical Composition of Fibers. Cellulose 283: 83-134.
  17. Hong, M.K., Lubis, M.A.R., Park, B.D., Sohn, C.H., Roh, J. 2018. Effects of surface laminate type and recycled fiber content on properties of three-layer medium density fiberboard. Wood Material Science & Engineering 0:1-9.
  18. Hu, Y., Tang, L., Lu, Q., Wang, S., Chen, X., Huang, B. 2014. Preparation of cellulose nanocrystals and carboxylated cellulose nanocrystals from borer powder of bamboo. Cellulose 21(3): 1611-1618. https://doi.org/10.1007/s10570-014-0236-0
  19. Jiang, H., Wu, Y., Han, B., Zhang, Y. 2017. Effect of oxidation time on the properties of cellulose nanocrystals from hybrid poplar residues using the ammonium persulfate. Carbohydrate Polymer 174: 291-298. https://doi.org/10.1016/j.carbpol.2017.06.080
  20. Ju, S.G. Roh, J.K. 2017. Manufacture of dyed recycling wood fiber using waste MDF. Journal of the Korean Wood Science and Technology. 45(3): 297-307. https://doi.org/10.5658/WOOD.2017.45.3.297
  21. Khanjanzadeh, H., Behrooz, R., Bahramifar, N., Gindl-Altmutter, W., Bacher, M., Edler, M., Griesser, T. 2018. Surface chemical functionalization of cellulose nanocrystals by 3-aminopropyltriethoxysilane. International Journal of Biological Macromolecules 106: 1288-1296. https://doi.org/10.1016/j.ijbiomac.2017.08.136
  22. Karade, S.R. 2010. Cement-bonded composites from lignocellulosic wastes. Construction and Building Materials 24(8): 1323-1330. https://doi.org/10.1016/j.conbuildmat.2010.02.003
  23. Kim, A.R., Kim, N.H. 2019. Effect of heat treatment and particle size on the crystalline properties of wood cellulose. Journal of the Korean Wood Science and Technology 47(3): 299-310. https://doi.org/10.5658/WOOD.2019.47.3.299
  24. Krause, K.C., Sauerbier, P., Koddenberg, T., Krause, A. 2018. Utilization of recycled material sources for wood-polypropylene composites: Effect on internal composite structure, particle characteristics and physico-mechanical properties. Fibers 6(4): 86 https://doi.org/10.3390/fib6040086
  25. Lam, E., Leung, A.C.W., Liu, Y., Majid, E., Hrapovic, S., Male, K.B., Luong, J.H.T. 2013. Green strategy guided by Raman spectroscopy for the synthesis of ammonium carboxylated nanocrystalline cellulose and the recovery of byproducts. ACS Sustainable Chemistry & Engineering 1: 278-283. https://doi.org/10.1021/sc3001367
  26. Lee, M., Prewitt, L., Mun, S.P. 2015. Environmental assessments of leachate from medium density fiberboard in a simulated landfill. Journal of the Korean Wood Science and Technology 43: 548-557. https://doi.org/10.5658/WOOD.2015.43.5.548
  27. Lee, M., Prewitt, L., Mun, S.P. 2014. Formaldehyde release from medium density fiberboard in simulated landfills for recycling. Journal of the Korean Wood Scienceand Technology 42: 597-604. https://doi.org/10.5658/WOOD.2014.42.5.597
  28. Leung, A.C.W., Hrapovic, S., Lam, E., Liu, Y., Male, K.B., Mahmoud, K.A., Luong, J.H.T. 2011. Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7: 302-305. https://doi.org/10.1002/smll.201001715
  29. Liu, Y., Liu, L., Wang, K., Zhang, H., Yuan, Y., Wei, H., Wang, X., Duan, Y., Zhou, L., Zhang, J. 2019. Modified Ammonium Persulfate Oxidations for Efficient Preparation of Carboxylated Cellulose Nanocrystals. Carbohydrate Polymer 229: 115572 https://doi.org/10.1016/j.carbpol.2019.115572
  30. Madsen, B., Ganstedt, E. K. 2013. Wood versus Plant Fibers: Similarities and Differences in Composite Applications. Advances in Materials Science and Engineering, ID 564346, doi:10.1155/2013/564346.
  31. Mascheroni, E., Rampazzo, R., Ortenzi, M.A., Piva, G., Bonetti, S., Piergiovanni, L. 2016a. Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging materials. Cellulose 23(1): 779-793. https://doi.org/10.1007/s10570-015-0853-2
  32. Nascimento, D.M. d., Almeida, J.S., Vale, M. do S., Leitao, R.C., Muniz, C.R., Figueiredo, M.C.B. d., Morais, J.P.S., Rosa, M. de F. 2016. A comprehensive approach for obtaining cellulose nanocrystal from coconut fiber. Part I: Proposition of technological pathways. Industrial Crops and Products 93: 66-75. https://doi.org/10.1016/j.indcrop.2015.12.078
  33. Ng, H.M., Sin, L.T., Tee, T.T., Bee, S.T., Hui, D., Low, C.Y., Rahmat, A.R. 2015. Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Composites Part B: Engineering 75: 176-200. https://doi.org/10.1016/j.compositesb.2015.01.008
  34. Oun, A.A., Rhim, J.W. 2017. Characterization of carboxymethyl cellulose-based nanocomposite films reinforced with oxidized nanocellulose isolated using ammonium persulfate method. Carbohydrate Polymer 174: 484-492. https://doi.org/10.1016/j.carbpol.2017.06.121
  35. Park, B.D., Um, I.C., Lee, S.Y., Dufresne, A. 2014. Preparation and characterization of cellulose nanofibril/polyvinyl alcohol composite nanofibers by electrospinning. Journal of the Korean Wood Scienceand Technology 42: 119-129. https://doi.org/10.5658/WOOD.2014.42.2.119
  36. Park, K.S., Kang, H.K., Park, S.H., Jung, S.C., Jeon, J.K., Lee, I.G., Kim, S.C., Park, Y.K. 2013. Conversion of waste medium density fiberboard over SAPO-11 catalyst. Journal of Nanoelectronics and Optoelectronics 8(6): 561-564. https://doi.org/10.1166/jno.2013.1527
  37. Rampazzo, R., Alkan, D., Gazzotti, S., Ortenzi, M.A., Piva, G., Piergiovanni, L. 2017. Cellulose Nanocrystals from Lignocellulosic Raw Materials, for Oxygen Barrier Coatings on Food Packaging Films. Packaging Technology and Science 30: 645-661. https://doi.org/10.1002/pts.2308
  38. Robles, E., Urruzola, I., Labidi, J., Serrano, L. 2015. Surface-modified nano-cellulose as reinforcement in poly (lactic acid) to conform new composites. Industrial Crops and Products 71: 44-53. https://doi.org/10.1016/j.indcrop.2015.03.075
  39. Saito, T., Isogai, A. 2004. TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5: 1983-1989. https://doi.org/10.1021/bm0497769
  40. Seo, Y.R., Kim, B.J. Lee, S.Y. 2019. Effects of nanoclay and glass fiber on the microstructural, mechanical, thermal, and water absorption properties of recycled WPCs. Journal of the Korean Wood Science and Technology 47(4): 472-485. https://doi.org/10.5658/wood.2019.47.4.472
  41. Shang, T.X., Zhang, M.Y., Jin, X.J. 2014. Easy procedure to prepare nitrogen-containing activated carbons for supercapacitors. RSC Advances 4: 39037-39044. https://doi.org/10.1039/C4RA05881J
  42. Ye, S., Yu, H.Y., Wang, D., Zhu, J., Gu, J. 2018. Green acid-free one-step hydrothermal ammonium persulfate oxidation of viscose fiber wastes to obtain carboxylated spherical cellulose nanocrystals for oil/water Pickering emulsion. Cellulose 25: 5139-5155. https://doi.org/10.1007/s10570-018-1917-x
  43. Zaini, L.H., Febrianto, F., Wistara, I.N.J., Marwanto, N., Maulana, M.I., Lee, S.H., Kim, N.H. 2019. Effect of ammonium persulfate concentration on characteristics of cellulose nanocrystals from oil palm frond. Journal of the Korean Wood Scienceand Technology 47: 597-606.
  44. Zhang, K., Sun, P., Liu, H., Shang, S., Song, J., Wang, D. 2016. Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods. Carbohydrate Polymer 138: 237-243. https://doi.org/10.1016/j.carbpol.2015.11.038