References
- Aslan, D.I., Ozogul, B., Ceylan, S., Geyikci, F. 2018. Thermokinetic analysis and product characterization of Medium Density Fiberboard pyrolysis. Bioresource Technology 258: 105-110. https://doi.org/10.1016/j.biortech.2018.02.126
- Azambuja, R. da R., de Castro, V.G., Trianoski, R., Iwakiri, S. 2018. Recycling wood waste from construction and demolition to produce particleboards. Maderas: Ciencia y Tecnologia 20: 681-690.
- Bashar, M.M., Zhu, H., Yamamoto, S., Mitsuishi, M. 2019. Highly carboxylated and crystalline cellulose nanocrystals from jute fiber by facile ammonium persulfate oxidation. Cellulose 26: 3671-3684. https://doi.org/10.1007/s10570-019-02363-7
- Castro-Guerrero, C.F., Gray, D.G. 2014. Chiral nematic phase formation by aqueous suspensions of cellulose nanocrystals prepared by oxidation with ammonium persulfate. Cellulose 21: 2567-2577. https://doi.org/10.1007/s10570-014-0308-1
- Cheng, M., Qin, Z., Liu, Y., Qin, Y., Li, T., Chen, L., Zhu, M. 2014. Efficient extraction of carboxylated spherical cellulose nanocrystals with narrow distribution through hydrolysis of lyocell fibers by using ammonium persulfate as an oxidant. Journal of Materials Chemistry A 2: 251-258. https://doi.org/10.1039/C3TA13653A
- Cho, M., Park, B.D., Kadla, J.F. 2012. Characterization of electrospun nanofibers of cellulose nanowhisker/polyvinyl alcohol composites. Journal of the Korean Wood Science and Technology 40: 71-77. https://doi.org/10.5658/WOOD.2012.40.2.71
- Couret, L., Irle, M., Belloncle, C., Cathala, B. 2017. Extraction and characterization of cellulose nanocrystals from post-consumer wood fiberboard waste. Cellulose 24(5): 2125-2137. https://doi.org/10.1007/s10570-017-1252-7
- El Achaby, M., Kassab, Z., Aboulkas, A., Gaillard, C., Barakat, A. 2018. Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites. International Journal of Biological Macromolecules 106: 681-691. https://doi.org/10.1016/j.ijbiomac.2017.08.067
- Fortunati, E., Benincasa, P., Balestra, G.M., Luzi, F., Mazzaglia, A., Del Buono, D., Puglia, D., Torre, L. 2016. Revalorization of barley straw and husk as precursors for cellulose nanocrystals extraction and their effect on PVA-CH nanocomposites. Industrial Crops and Products 92: 201-217. https://doi.org/10.1016/j.indcrop.2016.07.047
- Foster, E.J., Moon, R.J., Agarwal, U.P., Bortner, M.J., Bras, J., Camarero-Espinosa, S., Chan, K.J., Clift, M.J.D., Cranston, E.D., Eichhorn, S.J., Fox, D.M., Hamad, W.Y., Heux, L., Jean, B., Korey, M., Nieh, W., Ong, K.J., Reid, M.S., Renneckar, S., Roberts, R., Shatkin, J.A., Simonsen, J., Stinson-Bagby, K., Wanasekara, N., Youngblood, J. 2018. Current characterization methods for cellulose nanomaterials. Chemical Society Reviews 47: 2609-2679. https://doi.org/10.1039/C6CS00895J
- Goh, K.Y., Ching, Y.C., Chuah, C.H., Abdullah, L.C., Liou, N.S. 2016. Individualization of microfibrillated celluloses from oil palm empty fruit bunch: comparative studies between acid hydrolysis and ammonium persulfate oxidation. Cellulose 23: 379-390. https://doi.org/10.1007/s10570-015-0812-y
- Gu, J., Hu, C., Zhong, R., Tu, D., Yun, H., Zhang, W., Leu, S.Y. 2017. Isolation of cellulose nanocrystals from medium density fiberboards. Carbohydrate Polymer 167: 70-78. https://doi.org/10.1016/j.carbpol.2017.02.110
- Gwon, J.G., Lee, D.B., Cho, H.J., Lee, S.Y. 2018. Preparation and characteristics of cellulose acetate-based nanocomposites reinforced with cellulose nanocrystals (CNCs). Journal of the Korean Wood Science and Technology. 46: 565-576. https://doi.org/10.5658/WOOD.2018.46.5.565
- Haeldermans, T., Claesen, J., Maggen, J., Carleer, R., Yperman, J., Adriaensens, P., Samyn, P., Vandamme, D., Cuypers, A., Vanreppelen, K., Schreurs, S. 2019. Microwave assisted and conventional pyrolysis of MDF: Characterization of the produced biochars. Journal of Analytical and Applied Pyrolysis 138: 218-230. https://doi.org/10.1016/j.jaap.2018.12.027
- Hafemann, E., Battisti, R., Marangoni, C., Machado, R.A.F. 2019. Valorization of royal palm tree agroindustrial waste by isolating cellulose nanocrystals. Carbohydrate Polymer 218: 188-198. https://doi.org/10.1016/j.carbpol.2019.04.086
- Han, J.S., Rowell, J.S. 2008. Chemical Composition of Fibers. Cellulose 283: 83-134.
- Hong, M.K., Lubis, M.A.R., Park, B.D., Sohn, C.H., Roh, J. 2018. Effects of surface laminate type and recycled fiber content on properties of three-layer medium density fiberboard. Wood Material Science & Engineering 0:1-9.
- Hu, Y., Tang, L., Lu, Q., Wang, S., Chen, X., Huang, B. 2014. Preparation of cellulose nanocrystals and carboxylated cellulose nanocrystals from borer powder of bamboo. Cellulose 21(3): 1611-1618. https://doi.org/10.1007/s10570-014-0236-0
- Jiang, H., Wu, Y., Han, B., Zhang, Y. 2017. Effect of oxidation time on the properties of cellulose nanocrystals from hybrid poplar residues using the ammonium persulfate. Carbohydrate Polymer 174: 291-298. https://doi.org/10.1016/j.carbpol.2017.06.080
- Ju, S.G. Roh, J.K. 2017. Manufacture of dyed recycling wood fiber using waste MDF. Journal of the Korean Wood Science and Technology. 45(3): 297-307. https://doi.org/10.5658/WOOD.2017.45.3.297
- Khanjanzadeh, H., Behrooz, R., Bahramifar, N., Gindl-Altmutter, W., Bacher, M., Edler, M., Griesser, T. 2018. Surface chemical functionalization of cellulose nanocrystals by 3-aminopropyltriethoxysilane. International Journal of Biological Macromolecules 106: 1288-1296. https://doi.org/10.1016/j.ijbiomac.2017.08.136
- Karade, S.R. 2010. Cement-bonded composites from lignocellulosic wastes. Construction and Building Materials 24(8): 1323-1330. https://doi.org/10.1016/j.conbuildmat.2010.02.003
- Kim, A.R., Kim, N.H. 2019. Effect of heat treatment and particle size on the crystalline properties of wood cellulose. Journal of the Korean Wood Science and Technology 47(3): 299-310. https://doi.org/10.5658/WOOD.2019.47.3.299
- Krause, K.C., Sauerbier, P., Koddenberg, T., Krause, A. 2018. Utilization of recycled material sources for wood-polypropylene composites: Effect on internal composite structure, particle characteristics and physico-mechanical properties. Fibers 6(4): 86 https://doi.org/10.3390/fib6040086
- Lam, E., Leung, A.C.W., Liu, Y., Majid, E., Hrapovic, S., Male, K.B., Luong, J.H.T. 2013. Green strategy guided by Raman spectroscopy for the synthesis of ammonium carboxylated nanocrystalline cellulose and the recovery of byproducts. ACS Sustainable Chemistry & Engineering 1: 278-283. https://doi.org/10.1021/sc3001367
- Lee, M., Prewitt, L., Mun, S.P. 2015. Environmental assessments of leachate from medium density fiberboard in a simulated landfill. Journal of the Korean Wood Science and Technology 43: 548-557. https://doi.org/10.5658/WOOD.2015.43.5.548
- Lee, M., Prewitt, L., Mun, S.P. 2014. Formaldehyde release from medium density fiberboard in simulated landfills for recycling. Journal of the Korean Wood Scienceand Technology 42: 597-604. https://doi.org/10.5658/WOOD.2014.42.5.597
- Leung, A.C.W., Hrapovic, S., Lam, E., Liu, Y., Male, K.B., Mahmoud, K.A., Luong, J.H.T. 2011. Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7: 302-305. https://doi.org/10.1002/smll.201001715
- Liu, Y., Liu, L., Wang, K., Zhang, H., Yuan, Y., Wei, H., Wang, X., Duan, Y., Zhou, L., Zhang, J. 2019. Modified Ammonium Persulfate Oxidations for Efficient Preparation of Carboxylated Cellulose Nanocrystals. Carbohydrate Polymer 229: 115572 https://doi.org/10.1016/j.carbpol.2019.115572
- Madsen, B., Ganstedt, E. K. 2013. Wood versus Plant Fibers: Similarities and Differences in Composite Applications. Advances in Materials Science and Engineering, ID 564346, doi:10.1155/2013/564346.
- Mascheroni, E., Rampazzo, R., Ortenzi, M.A., Piva, G., Bonetti, S., Piergiovanni, L. 2016a. Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging materials. Cellulose 23(1): 779-793. https://doi.org/10.1007/s10570-015-0853-2
- Nascimento, D.M. d., Almeida, J.S., Vale, M. do S., Leitao, R.C., Muniz, C.R., Figueiredo, M.C.B. d., Morais, J.P.S., Rosa, M. de F. 2016. A comprehensive approach for obtaining cellulose nanocrystal from coconut fiber. Part I: Proposition of technological pathways. Industrial Crops and Products 93: 66-75. https://doi.org/10.1016/j.indcrop.2015.12.078
- Ng, H.M., Sin, L.T., Tee, T.T., Bee, S.T., Hui, D., Low, C.Y., Rahmat, A.R. 2015. Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Composites Part B: Engineering 75: 176-200. https://doi.org/10.1016/j.compositesb.2015.01.008
- Oun, A.A., Rhim, J.W. 2017. Characterization of carboxymethyl cellulose-based nanocomposite films reinforced with oxidized nanocellulose isolated using ammonium persulfate method. Carbohydrate Polymer 174: 484-492. https://doi.org/10.1016/j.carbpol.2017.06.121
- Park, B.D., Um, I.C., Lee, S.Y., Dufresne, A. 2014. Preparation and characterization of cellulose nanofibril/polyvinyl alcohol composite nanofibers by electrospinning. Journal of the Korean Wood Scienceand Technology 42: 119-129. https://doi.org/10.5658/WOOD.2014.42.2.119
- Park, K.S., Kang, H.K., Park, S.H., Jung, S.C., Jeon, J.K., Lee, I.G., Kim, S.C., Park, Y.K. 2013. Conversion of waste medium density fiberboard over SAPO-11 catalyst. Journal of Nanoelectronics and Optoelectronics 8(6): 561-564. https://doi.org/10.1166/jno.2013.1527
- Rampazzo, R., Alkan, D., Gazzotti, S., Ortenzi, M.A., Piva, G., Piergiovanni, L. 2017. Cellulose Nanocrystals from Lignocellulosic Raw Materials, for Oxygen Barrier Coatings on Food Packaging Films. Packaging Technology and Science 30: 645-661. https://doi.org/10.1002/pts.2308
- Robles, E., Urruzola, I., Labidi, J., Serrano, L. 2015. Surface-modified nano-cellulose as reinforcement in poly (lactic acid) to conform new composites. Industrial Crops and Products 71: 44-53. https://doi.org/10.1016/j.indcrop.2015.03.075
- Saito, T., Isogai, A. 2004. TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5: 1983-1989. https://doi.org/10.1021/bm0497769
- Seo, Y.R., Kim, B.J. Lee, S.Y. 2019. Effects of nanoclay and glass fiber on the microstructural, mechanical, thermal, and water absorption properties of recycled WPCs. Journal of the Korean Wood Science and Technology 47(4): 472-485. https://doi.org/10.5658/wood.2019.47.4.472
- Shang, T.X., Zhang, M.Y., Jin, X.J. 2014. Easy procedure to prepare nitrogen-containing activated carbons for supercapacitors. RSC Advances 4: 39037-39044. https://doi.org/10.1039/C4RA05881J
- Ye, S., Yu, H.Y., Wang, D., Zhu, J., Gu, J. 2018. Green acid-free one-step hydrothermal ammonium persulfate oxidation of viscose fiber wastes to obtain carboxylated spherical cellulose nanocrystals for oil/water Pickering emulsion. Cellulose 25: 5139-5155. https://doi.org/10.1007/s10570-018-1917-x
- Zaini, L.H., Febrianto, F., Wistara, I.N.J., Marwanto, N., Maulana, M.I., Lee, S.H., Kim, N.H. 2019. Effect of ammonium persulfate concentration on characteristics of cellulose nanocrystals from oil palm frond. Journal of the Korean Wood Scienceand Technology 47: 597-606.
- Zhang, K., Sun, P., Liu, H., Shang, S., Song, J., Wang, D. 2016. Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods. Carbohydrate Polymer 138: 237-243. https://doi.org/10.1016/j.carbpol.2015.11.038