Acknowledgement
Supported by : Jose Entrecanales Ibarra Foundation
The research described in this paper was financially supported by the José Entrecanales Ibarra Foundation.
References
- Alavi, A.H. and Sadrossadat, E. (2016), "New design equations for estimation of ultimate bearing capacity of shallow foundations resting on rock masses", Geosci. Front., 7(1), 91-99, https://doi.org/10.1016/j.gsf.2014.12.005.
- Andrawes, K.Z., Al-Omari, R.R. and Kirkpatrick, W.M. (1996), "Bearing capacity of a strip foundation on a sand layer overlying a smooth rigid stratum", Geotech. Geol. Eng., 14(3), 227-236. https://doi.org/10.1007/BF00452949.
- Budetta, P. and Napp,i M. (2011), "Heterogeneous rock mass classification by means of the geological strength index: The San Mauro formation (Cilento, Italy)", Bull. Eng. Geol. Environ., 70(4), 585-593. https://doi.org/10.1007/s10064-011-0351-1.
- Carter, J.P. and Kulhawy, F.H. (1988), "Analysis and design of foundations socketed into rock", Report No. EL-5918, Empire State Electric Engineering Research Corporation and Electric Power Research Institute, New York, U.S.A.
- Farah, C.A. (2004), "Ultimate bearing capacity of shallow foundations on layered soils", M.Sc Thesis, Concordia University, Montreal, Quebec, Canada
- Griffiths, D.V. (1982), "Computation of bearing capacity factors using finite elements", Geotechnique, 32(3), 195-202. https://doi.org/10.1680/geot.1982.32.3.195.
- Hanna, A.M. (1981), "Experimental study on footings in layered soil", J. Geotech. Eng. Div., 107(8), 1113-1127. https://doi.org/10.1061/AJGEB6.0001178
- Hanna, A.M. (1982), "Bearing capacity of foundations on a weak sand layer overlaying a strong deposit", Can. Geotech. J., 19(3), 392-396. https://doi.org/10.1139/t82-043.
- Hanna, A.M. (1987), "Finite element analysis of footings on layered soils", Math. Modell., 9(11), 813-819. https://doi.org/10.1016/0270-0255(87)90501-X.
- Hanna, A.M. and Meyerhof, G.G. (1980), "Design charts for ultimate bearing capacity of foundations on sand overlying soft clay", Can. Geotech. J., 17(2), 300-303. https://doi.org/10.1139/t80-030.
- Hoek, E. and Brown, E.T. (1980), "Empirical strength criterion for rock masses", J. Geotech. Eng. Div., 106(9), 1013-1035. https://doi.org/10.1061/AJGEB6.0001029
- Hoek, E. and Brown, E.T. (1997), "Practical estimates of rock mass strength", Int. J. Rock Mech. Min. Sci., 34(8), 1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X.
- Hoek, E., Carranza-Torres, C. and Corkum, B. (2002), "Hoek-Brown failure criterion - 2002 Edition", Proceedings of the 5th North American Rock Mechanics Symposium and the 17th Tunnelling Association of Canada Conference, Toronto, Ontario, Canada, July.
- Kiru, R. and Madhav, M. (2010), "Response of rigid footing on reinforced granular fill over soft soil", Geomech. Eng., 2(4), 281-302. https://doi.org/10.12989/gae.2010.2.4.281.
- Kuo, Y.L., Jaksa, M.B., Lyamin, A.V. and Kaggwa, W.S. (2009), "ANN-based model for predicting the bearing capacity of strip footing on multi-layered cohesive soil", Comput. Geotech., 36(3), 503-516. https://doi.org/10.1016/j.compgeo.2008.07.002.
- Lyamin, A.V. and Sloan, S.W. (2002), "Lower bound limit analysis using non-linear programming", Int. J. Numer. Meth. Eng., 55(5), 573-611. https://doi.org/10.1002/nme.511.
- Lyamin, A.V. and Sloan, S.W. (2002), "Upper bound limit analysis using linear finite elements and non-linear programming", Int J Numer. Anal. Meth. Geomech., 26(2), 181-216. https://doi.org/10.1002/nag.198.
- Marinos, P. and Hoek, E. (2001), "Estimating the geotechnical properties of heterogenous rock masses such as flysch", Bull. Eng. Geol. Environ., 60(2), 85-92. https://doi.org/10.1007/s100640000090.
- Marinos, P., Hoek, E. and Marinos, V. (2006), "Variability of the engineering properties of rock masses quantified by the geological strength index: The case of ophiolites with special emphasis on tunneling", Bull. Eng. Geol. Environ., 65(2), 129-142. https://doi.org/10.1007/s10064-005-0018-x.
- Marinos, V. and Carter, T.G. (2018), "Maintaining geological reality in application of GSI for design of engineering structures in rock", Eng. Geol., 239, 282-297. https://doi.org/10.1016/j.enggeo.2018.03.022.
- Merifield, R.S., Lyamin, A.V. and Sloan, S.W. (2006), "Limit analysis solutions for the bearing capacity of rock masses using the generalised Hoek-Brown criterion", Int. J. Rock Mech. Min. Sci., 43(6), 920-937. https://doi.org/10.1016/j.ijrmms.2006.02.001.
- Meyerhof, G.G. (1951), "The ultimate bearing capacity of foundations", Geotechnique, 2(4), 301-332. https://doi.org/10.1680/geot.1951.2.4.301
- Meyerhof, G.G. (1974), "Ultimate bearing capacity of footings on sand layer overlying clay", Can. Geotech. J., 11(2), 223-229. https://doi.org/10.1139/t74-018.
- Misir, G. and Laman, M. (2016), "A modern approach to estimate the bearing capacity of layered soil", Period. Polytech. Civ. Eng., 61(3), 434-446. https://doi.org/10.3311/ppci.9578.
- Okamura, M., Takemura, J. and Kimura, T. (1998), "Bearing capacity predictions of sand overlying clay based on limit equilibrium methods", Soils Found., 38(1), 181-194. https://doi.org/10.3208/sandf.38.181.
- Ozbek, A. and Gul, M. (2014), "The geotechnical evaluation of sandstone-claystone alternations based on geological strength index", Arab. J. Geosci., 8(7), 5257-5268. https://doi.org/10.1007/s12517-014-1541-5
- Santa, C., Gonçalves, L. and Chamine, H.I. (2019), "A comparative study of GSI chart versions in a heterogeneous rock mass media (Marão tunnel, north Portugal): A reliable index in geotechnical surveys and rock engineering design", Bull. Eng. Geol. Environ., 78(8), 5889-5903. https://doi.org/10.1007/s10064-019-01481-7.
- Satyanarayana, B. and Garg, R.K. (1981), "Bearing capacity of footings on layered C-PHI soils", Technical note, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 18(1), 14. https://doi.org/10.1016/0148-9062(81)90444-7.
- Serrano, A. and Olalla, C. (1994), "Ultimate bearing capacity of rock masses", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 31(2), 93-106. https://doi.org/10.1016/0148-9062(94)92799-5.
- Serrano, A., Olalla, C. and Gonzalez, J. (2000), "Ultimate bearing capacity of rock masses based on the modified Hoek-Brown criterion", Int. J. Rock Mech. Min. Sci., 37(6), 1013-1018. https://doi.org/10.1016/S1365-1609(00)00028-9.
- Shahin, M.A. and Cheung, E.M. (2011), "Stochastic design charts for bearing capacity of strip footings", Geomech. Eng., 3(2), 153-167. https://doi.org/10.12989/gae.2011.3.2.153.
- Shoaei, M.D., Alkarni, A., Noorzaei, J., Jaafar, M.S., Bujang, B. and Huat, K. (2012), "Review of available approaches for ultimate bearing capacity of two-layered soils", J. Civ. Eng. Manage., 18(4), 469-482. https://doi.org/10.3846/13923730.2012.699930.
- Sloan SW. (1988), "Lower bound limit analysis using finite elements and linear programming", Int. J. Numer. Anal. Meth. Geomech., 12(1), 61-77. https://doi.org/10.1002/nag.1610120105.
- Sloan, S.W. and Kleeman, P.W. (1995), "Upper bound limit analysis using discontinuous velocity fields", Comput. Meth. Appl. Mech. Eng., 127(1-4), 293-314. https://doi.org/10.1016/0045-7825(95)00868-1.
- Sokolovskii, VV. (1965), Statics of Soil Media, Butterworths Science, London, U.K.
- Tajeri, S., Sadrossadat, E. and Bazaz, J.B. (2015), "Indirect estimation of the ultimate bearing capacity of shallow foundations resting on rock masses", Int. J. Rock Mech. Min. Sci., 80, 107-117. https://doi.org/10.1016/j.ijrmms.2015.09.015.
- Terzaghi, K. (1943), Theoretical Soil Mechanics, Wiley, New York, U.S.A.
- Uncuoglu, E. (2015), "The bearing capacity of square footings on a sand layer overlying clay", Geomech. Eng., 9(3), 287-311. https://doi.org/10.12989/gae.2015.9.3.287.
- Zhu, M. (2004), "Bearing capacity of strip footings on two-layer clay soil by finite element method", Proceedings of the 2004 ABAQUS Users' Conference, Boston, Massachusetts, U.S.A., May.