DOI QR코드

DOI QR Code

Bearing capacity of shallow foundations on the bilayer rock

  • Alencar, Ana S. (ETSI Caminos, C. y P., Technical University of Madrid (UPM)) ;
  • Galindo, Ruben A. (ETSI Caminos, C. y P., Technical University of Madrid (UPM)) ;
  • Melentijevic, Svetlana (Faculty of Geology, Complutense University of Madrid (UCM))
  • Received : 2019.06.17
  • Accepted : 2020.03.02
  • Published : 2020.04.10

Abstract

The traditional formulations for estimation of bearing capacity in rock mechanics assume a homogeneous and isotropic rock mass. However, it is common that the rock mass consists of different layers of different rock properties or of the same rock matrix with distinct geotechnical quality levels. The bearing capacity of a heterogeneous rock is estimated traditionally through the weighted average. In this paper, the solution of the weighted average is compared to the finite difference method applied to a bilayer rock mass. The influence of different parameters such as the thickness of the layers, the rock type, the uniaxial compressive strength and the overall geotechnical quality of the rock mass on the bearing capacity of a bilayer rock mass is analyzed. A parametric study by finite difference method is carried out to develop a bearing capacity factor in function of the layer thickness and the rock mass quality expressed in terms of the geological strength index, which is presented in a form of a chart. Therefore, this correlation factor allows estimating the bearing capacity of a rock mass that is formed by two layers with distinct GSI, depending on the bearing capacity of the rock mass formed only by the upper layer and considered by that way as homogenous and isotropic rock mass.

Keywords

Acknowledgement

Supported by : Jose Entrecanales Ibarra Foundation

The research described in this paper was financially supported by the José Entrecanales Ibarra Foundation.

References

  1. Alavi, A.H. and Sadrossadat, E. (2016), "New design equations for estimation of ultimate bearing capacity of shallow foundations resting on rock masses", Geosci. Front., 7(1), 91-99, https://doi.org/10.1016/j.gsf.2014.12.005.
  2. Andrawes, K.Z., Al-Omari, R.R. and Kirkpatrick, W.M. (1996), "Bearing capacity of a strip foundation on a sand layer overlying a smooth rigid stratum", Geotech. Geol. Eng., 14(3), 227-236. https://doi.org/10.1007/BF00452949.
  3. Budetta, P. and Napp,i M. (2011), "Heterogeneous rock mass classification by means of the geological strength index: The San Mauro formation (Cilento, Italy)", Bull. Eng. Geol. Environ., 70(4), 585-593. https://doi.org/10.1007/s10064-011-0351-1.
  4. Carter, J.P. and Kulhawy, F.H. (1988), "Analysis and design of foundations socketed into rock", Report No. EL-5918, Empire State Electric Engineering Research Corporation and Electric Power Research Institute, New York, U.S.A.
  5. Farah, C.A. (2004), "Ultimate bearing capacity of shallow foundations on layered soils", M.Sc Thesis, Concordia University, Montreal, Quebec, Canada
  6. Griffiths, D.V. (1982), "Computation of bearing capacity factors using finite elements", Geotechnique, 32(3), 195-202. https://doi.org/10.1680/geot.1982.32.3.195.
  7. Hanna, A.M. (1981), "Experimental study on footings in layered soil", J. Geotech. Eng. Div., 107(8), 1113-1127. https://doi.org/10.1061/AJGEB6.0001178
  8. Hanna, A.M. (1982), "Bearing capacity of foundations on a weak sand layer overlaying a strong deposit", Can. Geotech. J., 19(3), 392-396. https://doi.org/10.1139/t82-043.
  9. Hanna, A.M. (1987), "Finite element analysis of footings on layered soils", Math. Modell., 9(11), 813-819. https://doi.org/10.1016/0270-0255(87)90501-X.
  10. Hanna, A.M. and Meyerhof, G.G. (1980), "Design charts for ultimate bearing capacity of foundations on sand overlying soft clay", Can. Geotech. J., 17(2), 300-303. https://doi.org/10.1139/t80-030.
  11. Hoek, E. and Brown, E.T. (1980), "Empirical strength criterion for rock masses", J. Geotech. Eng. Div., 106(9), 1013-1035. https://doi.org/10.1061/AJGEB6.0001029
  12. Hoek, E. and Brown, E.T. (1997), "Practical estimates of rock mass strength", Int. J. Rock Mech. Min. Sci., 34(8), 1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X.
  13. Hoek, E., Carranza-Torres, C. and Corkum, B. (2002), "Hoek-Brown failure criterion - 2002 Edition", Proceedings of the 5th North American Rock Mechanics Symposium and the 17th Tunnelling Association of Canada Conference, Toronto, Ontario, Canada, July.
  14. Kiru, R. and Madhav, M. (2010), "Response of rigid footing on reinforced granular fill over soft soil", Geomech. Eng., 2(4), 281-302. https://doi.org/10.12989/gae.2010.2.4.281.
  15. Kuo, Y.L., Jaksa, M.B., Lyamin, A.V. and Kaggwa, W.S. (2009), "ANN-based model for predicting the bearing capacity of strip footing on multi-layered cohesive soil", Comput. Geotech., 36(3), 503-516. https://doi.org/10.1016/j.compgeo.2008.07.002.
  16. Lyamin, A.V. and Sloan, S.W. (2002), "Lower bound limit analysis using non-linear programming", Int. J. Numer. Meth. Eng., 55(5), 573-611. https://doi.org/10.1002/nme.511.
  17. Lyamin, A.V. and Sloan, S.W. (2002), "Upper bound limit analysis using linear finite elements and non-linear programming", Int J Numer. Anal. Meth. Geomech., 26(2), 181-216. https://doi.org/10.1002/nag.198.
  18. Marinos, P. and Hoek, E. (2001), "Estimating the geotechnical properties of heterogenous rock masses such as flysch", Bull. Eng. Geol. Environ., 60(2), 85-92. https://doi.org/10.1007/s100640000090.
  19. Marinos, P., Hoek, E. and Marinos, V. (2006), "Variability of the engineering properties of rock masses quantified by the geological strength index: The case of ophiolites with special emphasis on tunneling", Bull. Eng. Geol. Environ., 65(2), 129-142. https://doi.org/10.1007/s10064-005-0018-x.
  20. Marinos, V. and Carter, T.G. (2018), "Maintaining geological reality in application of GSI for design of engineering structures in rock", Eng. Geol., 239, 282-297. https://doi.org/10.1016/j.enggeo.2018.03.022.
  21. Merifield, R.S., Lyamin, A.V. and Sloan, S.W. (2006), "Limit analysis solutions for the bearing capacity of rock masses using the generalised Hoek-Brown criterion", Int. J. Rock Mech. Min. Sci., 43(6), 920-937. https://doi.org/10.1016/j.ijrmms.2006.02.001.
  22. Meyerhof, G.G. (1951), "The ultimate bearing capacity of foundations", Geotechnique, 2(4), 301-332. https://doi.org/10.1680/geot.1951.2.4.301
  23. Meyerhof, G.G. (1974), "Ultimate bearing capacity of footings on sand layer overlying clay", Can. Geotech. J., 11(2), 223-229. https://doi.org/10.1139/t74-018.
  24. Misir, G. and Laman, M. (2016), "A modern approach to estimate the bearing capacity of layered soil", Period. Polytech. Civ. Eng., 61(3), 434-446. https://doi.org/10.3311/ppci.9578.
  25. Okamura, M., Takemura, J. and Kimura, T. (1998), "Bearing capacity predictions of sand overlying clay based on limit equilibrium methods", Soils Found., 38(1), 181-194. https://doi.org/10.3208/sandf.38.181.
  26. Ozbek, A. and Gul, M. (2014), "The geotechnical evaluation of sandstone-claystone alternations based on geological strength index", Arab. J. Geosci., 8(7), 5257-5268. https://doi.org/10.1007/s12517-014-1541-5
  27. Santa, C., Gonçalves, L. and Chamine, H.I. (2019), "A comparative study of GSI chart versions in a heterogeneous rock mass media (Marão tunnel, north Portugal): A reliable index in geotechnical surveys and rock engineering design", Bull. Eng. Geol. Environ., 78(8), 5889-5903. https://doi.org/10.1007/s10064-019-01481-7.
  28. Satyanarayana, B. and Garg, R.K. (1981), "Bearing capacity of footings on layered C-PHI soils", Technical note, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 18(1), 14. https://doi.org/10.1016/0148-9062(81)90444-7.
  29. Serrano, A. and Olalla, C. (1994), "Ultimate bearing capacity of rock masses", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 31(2), 93-106. https://doi.org/10.1016/0148-9062(94)92799-5.
  30. Serrano, A., Olalla, C. and Gonzalez, J. (2000), "Ultimate bearing capacity of rock masses based on the modified Hoek-Brown criterion", Int. J. Rock Mech. Min. Sci., 37(6), 1013-1018. https://doi.org/10.1016/S1365-1609(00)00028-9.
  31. Shahin, M.A. and Cheung, E.M. (2011), "Stochastic design charts for bearing capacity of strip footings", Geomech. Eng., 3(2), 153-167. https://doi.org/10.12989/gae.2011.3.2.153.
  32. Shoaei, M.D., Alkarni, A., Noorzaei, J., Jaafar, M.S., Bujang, B. and Huat, K. (2012), "Review of available approaches for ultimate bearing capacity of two-layered soils", J. Civ. Eng. Manage., 18(4), 469-482. https://doi.org/10.3846/13923730.2012.699930.
  33. Sloan SW. (1988), "Lower bound limit analysis using finite elements and linear programming", Int. J. Numer. Anal. Meth. Geomech., 12(1), 61-77. https://doi.org/10.1002/nag.1610120105.
  34. Sloan, S.W. and Kleeman, P.W. (1995), "Upper bound limit analysis using discontinuous velocity fields", Comput. Meth. Appl. Mech. Eng., 127(1-4), 293-314. https://doi.org/10.1016/0045-7825(95)00868-1.
  35. Sokolovskii, VV. (1965), Statics of Soil Media, Butterworths Science, London, U.K.
  36. Tajeri, S., Sadrossadat, E. and Bazaz, J.B. (2015), "Indirect estimation of the ultimate bearing capacity of shallow foundations resting on rock masses", Int. J. Rock Mech. Min. Sci., 80, 107-117. https://doi.org/10.1016/j.ijrmms.2015.09.015.
  37. Terzaghi, K. (1943), Theoretical Soil Mechanics, Wiley, New York, U.S.A.
  38. Uncuoglu, E. (2015), "The bearing capacity of square footings on a sand layer overlying clay", Geomech. Eng., 9(3), 287-311. https://doi.org/10.12989/gae.2015.9.3.287.
  39. Zhu, M. (2004), "Bearing capacity of strip footings on two-layer clay soil by finite element method", Proceedings of the 2004 ABAQUS Users' Conference, Boston, Massachusetts, U.S.A., May.