DOI QR코드

DOI QR Code

Electronic Structure and Si L2,3-edge X-ray Raman Scattering Spectra for SiO2 Polymorphs: Insights from Quantum Chemical Calculations

양자화학계산을 이용한 SiO2 동질이상의 전자 구조와 Si L2,3-edge X-선 라만 산란 스펙트럼 분석

  • Kim, Yong-Hyun (Laboratory of Physics and Chemistry of Earth Materials, School of Earth and Environmental Sciences, Seoul National University) ;
  • Yi, Yoo Soo (Division of Polar Paleoenvironment, Korea Polar Research Institute) ;
  • Lee, Sung Keun (Laboratory of Physics and Chemistry of Earth Materials, School of Earth and Environmental Sciences, Seoul National University)
  • 김용현 (서울대학교 지구환경과학부) ;
  • 이유수 (극지연구소 극지고환경연구부) ;
  • 이성근 (서울대학교 지구환경과학부)
  • Received : 2020.03.05
  • Accepted : 2020.03.23
  • Published : 2020.03.31

Abstract

The atomic structures of silicate liquids at high pressure provide insights into the transport properties including thermal conductivities or elemental partitioning behavior between rocks and magmas in Earth's interior. Whereas the local electronic structure around silicon may vary with the arrangement of the nearby oxygens, the detailed nature of such relationship remains to be established. Here, we explored the atomic origin of the pressure-induced changes in the electronic structure around silicon by calculating the partial electronic density of states and L3-edge X-ray absorption spectra of SiO2 polymorphs. The result showed that the Si PDOS at the conduction band varies with the crystal structure and local atomic environments. Particularly, d-orbital showed the distinct features at 108 and 130 eV upon the changes in the coordination number of Si. Calculated Si XAS spectra showed features due to the s,d-orbitals at the conduction band and varied similarly with those observed in s,d-orbitals upon changes in the crystal structures. The calculated Si XAS spectrum for α-quartz was analogous to the experimental Si XRS spectrum for SiO2 glass, implying the overall similarities in the local atomic environments around the Si. The edge energies at the center of gravity of XAS spectra were closely related to the Si-O distance, thus showing the systematic changes upon densification. Current results suggest that the Si L2,3-edge XRS, sensitive probe of the Si-O distance, would be useful in unveiling the densification mechanism of silicate glasses and melts at high pressure.

고압 환경에서 규산염 용융체의 원자 구조에 대한 정보는 지구 내부 마그마의 열전도율이나 주변 암석과의 원소 분배계수와 같은 이동 물성을 이해하는 단서를 제공한다. 규소의 전자 구조는 규산염 다면체 주변의 산소 원자 분포와 연관성을 가질 것으로 예상되나, 이 사이의 상관관계가 명확하게 밝혀져 있지 않다. 본 연구는 SiO2의 고밀도화에 따른 규소의 전자 구조 변화의 미시적인 기원을 규명하기 위해 SiO2 동질이상의 규소 부분 상태 밀도와 L3-edge X-선 흡수분광분석(X-ray absorption spectroscopy; XAS) 스펙트럼을 계산하였다. 규소의 전도 띠 영역에서 전자 구조는 결정 구조에 따라서 변화하였다. 특히 d-오비탈은 108, 130 eV 영역에서 배위 환경에 따른 뚜렷한 차이를 보였다. 계산된 XAS 스펙트럼은 규소 전도 띠의 s,d-오비탈에서 기인하는 피크를 보였으며, 결정 구조에 따라 s,d-오비탈과 유사한 양상으로 변화했다. 계산된 석영의 XAS 스펙트럼은 SiO2 유리의 XR S 실험 결과와 유사하였으며 규소 주변 원자 환경이 비슷하기 때문으로 생각된다. XAS 스펙트럼을 수치화한 무게 중심 값은 Si-O 결합 거리와 밀접한 상관관계를 가지며 이로 인하여 고밀도화 과정에서 체계적으로 변화한다. 본 연구의 결과는 Si-O 결합 거리에 민감한 규소 L2,3-edge XRS가 규산염 유리 및 용융체의 고밀도화 기작을 규명하는 과정에서 유용하게 적용될 수 있음을 지시한다.

Keywords

References

  1. Akins, J.A., Luo, S.-N., Asimow, P.D. and Ahrens, T.J., 2004, Shock-induced melting of $MgSiO_3$ perovskite and implications for melts in Earth's lowermost mantle. Geophysical Research Letters, 31, L14612. https://doi.org/10.1029/2004GL020237
  2. Andrault, D., Fiquet, G., Guyot, F. and Hanfland, M., 1998, Pressure-induced Landau-type transition in stishovite. Science, 282, 720-724. https://doi.org/10.1126/science.282.5389.720
  3. Bergmann, U., Glatzel, P. and Cramer, S.P., 2002, Bulk-sensitive XAS characterization of light elements: from X-ray Raman scattering to X-ray Raman spectroscopy. Microchemical Journal, 71, 221-230. https://doi.org/10.1016/S0026-265X(02)00014-0
  4. Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D. and Luitz, J., 2001, WIEN2k (An augmented plane wave + local orbitals program for calculating crystal properties). Technische Universitat Wien, Austria.
  5. Chow, P., Xiao, Y.M., Rod, E., Bai, L.G., Shen, G.Y., Sinogeikin, S., Gao, N., Ding, Y. and Mao, H.-K., 2015, Focusing polycapillary to reduce parasitic scattering for inelastic x-ray measurements at high pressure. Review of Scientific Instruments, 86, 072203. https://doi.org/10.1063/1.4926890
  6. Cordier, P., Mainprice, D. and Mosenfelder, J.L., 2004, Mechanical instability near the stishovite-$CaCl_2$ phase transition. European journal of mineralogy, 16, 387-399. https://doi.org/10.1127/0935-1221/2004/0016-0387
  7. Fukui, H., Kanzaki, M., Hiraoka, N. and Cai, Y.Q., 2008, Coordination environment of silicon in silica glass up to 74 GPa: An x-ray Raman scattering study at the silicon L-edge. Physical Review B, 78, 012203. https://doi.org/10.1103/PhysRevB.78.012203
  8. Fukui, H., Kanzaki, M., Hiraoka, N. and Cai, Y.Q., 2009, X-ray Raman scattering for structural investigation of silica/silicate minerals. Physics and Chemistry of Minerals, 36, 171-181. https://doi.org/10.1007/s00269-008-0267-x
  9. Hebert, C., 2007, Practical aspects of running the WIEN2k code for electron spectroscopy. Micron, 38, 12-28. https://doi.org/10.1016/j.micron.2006.03.010
  10. Hebert, C., Luitz, J. and Schattschneider, P., 2003, Improvement of energy loss near edge structure calculation using Wien2k. Micron, 34, 219-225. https://doi.org/10.1016/S0968-4328(03)00030-1
  11. Karki, B.B. and Stixrude, L.P., 2010, Viscosity of $MgSiO_3$ liquid at Earth's mantle conditions: Implications for an early magma ocean. Science, 328, 740-742. https://doi.org/10.1126/science.1188327
  12. Khim, H., Yi, Y.S. and Lee, S.K., 2017, Core-hole effect on partial electronic density of state and O K-edge X-ray Raman scattering spectra of high-pressure $SiO_2$ phases. Journal of the Mineralogical Society of Korea, 30, 59-70. https://doi.org/10.9727/jmsk.2017.30.2.59
  13. Kim, Y.-H., Yi, Y.S., Kim, H.-I., Chow, P., Xiao, Y., Shen, G. and Lee, S. K., 2019, Structural transitions in $MgSiO_3$ glasses and melts at the core-mantle boundary observed via inelastic X-ray scattering. Geophysical Research Letters, 46, 13756-13764. https://doi.org/10.1029/2019GL085889
  14. Kim, Y.-H., Yi, Y.S., Chow, P., Xiao, Y., Ji, C., Shen, G. and Lee, S.K., Densification of $SiO_2$ crystals and glasses at megabar pressures: Insights from Si $L_{2,3}$-edge X-ray Raman scattering. in preparation.
  15. Kingma, K.J., Cohen, R.E., Hemley, R.J. and Mao, H.K., 1995, Transformation of stishovite to a denser phase at lower-mantle pressures. Nature, 374, 243-245. https://doi.org/10.1038/374243a0
  16. Kono, Y., Shibazaki, Y., Kenney-Benson, C., Wang, Y. and Shen, G., 2018, Pressure-induced structural change in $MgSiO_3$ glass at pressures near the Earth's core-mantle boundary. Proceedings of the National Academy of Sciences, 115, 1742-1747. https://doi.org/10.1073/pnas.1716748115
  17. Lee, S.K., 2018, Amorphous oxides under extreme compression: Insights from solid-state nuclear magnetic resonance and inelastic X-ray scattering. Physics and High Technology, 27, 19-28. https://doi.org/10.3938/PhiT.27.014
  18. Lee, S.K., Eng, P.J. and Mao, H.K., 2014, Probing of pressure- Induced bonding transitions in crystalline and amorphous Earth materials: Insights from X-ray Raman scattering at high pressure. In Spectroscopic methods in mineralology and materials sciences (eds. Henderson, G. S., Neuville, D. R., and Downs, R. T.), Mineralogical Society of America, Chantilly, VA, 139-174.
  19. Lee, S.K., Eng, P.J., Mao, H.K. and Shu, J. F., 2008a, Probing and modeling of pressure-induced coordination transformation in borate glasses: Inelastic x-ray scattering study at high pressure. Physical Review B, 78, 214203. https://doi.org/10.1103/PhysRevB.78.214203
  20. Lee, S.K., Eng, P.J., Mao, H.K., Meng, Y. and Shu, J., 2007, Structure of alkali borate glasses at high pressure: B and Li K-edge inelastic X-ray scattering study. Physical Review Letters, 98, 105502. https://doi.org/10.1103/PhysRevLett.98.105502
  21. Lee, S.K., Kim, Y.-H., Chow, P., Xiao, Y., Ji, C. and Shen, G., 2018, Amorphous boron oxide at megabar pressures via inelastic X-ray scattering. Proceedings of the National Academy of Sciences, 115, 5855-5860. https://doi.org/10.1073/pnas.1800777115
  22. Lee, S.K., Eng, P.J., Mao, H.K., Meng, Y., Newville, M., Hu, M.Y. and Shu, J. F., 2005, Probing of bonding changes in $B_2O_3$ glasses at high pressure with inelastic Xray scattering. Nature Materials, 4, 851-854. https://doi.org/10.1038/nmat1511
  23. Lee, S.K., Kim, Y.-H., Yi, Y.S., Chow, P., Xiao, Y.M., Ji, C. and Shen, G.Y., 2019, Oxygen quadclusters in $SiO_2$ glass above megabar pressures up to 160 GPa revealed by Xray Raman scattering. Physical Review Letters, 123, 235701. https://doi.org/10.1103/PhysRevLett.123.235701
  24. Lee, S.K., Park, S.Y., Kim, H.-I., Tschauner, O., Asimow, P., Bai, L., Xiao, Y. and Chow, P., 2012, Structure of shock compressed model basaltic glass: Insights from O K-edge X-ray Raman scattering and high-resolution $^{27}Al$ NMR spectroscopy. Geophysical Research Letters, 39, L05306.
  25. Lee, S.K., Lin, J.F., Cai, Y.Q., Hiraoka, N., Eng, P. J., Okuchi, T., Mao, H.K., Meng, Y., Hu, M.Y., Chow, P., Shu, J., Li, B., Fukui, H., Lee, B.H., Kim, H.N. and Yoo, C.S., 2008b, X-ray Raman scattering study of $MgSiO_3$ glass at high pressure: Implication for triclustered $MgSiO_3$ melt in Earth's mantle. Proceedings of the National Academy of Sciences, 105, 7925-7929. https://doi.org/10.1073/pnas.0802667105
  26. Lin, J.F., Fukui, H., Prendergast, D., Okuchi, T., Cai, Y. Q., Hiraoka, N., Yoo, C.S., Trave, A., Eng, P., Hu, M. Y. and Chow, P., 2007, Electronic bonding transition in compressed $SiO_2$ glass. Physical Review B, 75, 012201. https://doi.org/10.1103/physrevb.75.012201
  27. Momma, K. and Izumi, F., 2011, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 1272-1276. https://doi.org/10.1107/S0021889811038970
  28. Moulton, B.J. A., Henderson, G.S., Fukui, H., Hiraoka, N., de Ligny, D., Sonneville, C. and Kanzaki, M., 2016, In situ structural changes of amorphous diopside (CaMg-$Si_2O_6$) up to 20 GPa: A Raman and O K-edge X-ray Raman spectroscopic study. Geochimica et Cosmochimica Acta, 178, 41-61. https://doi.org/10.1016/j.gca.2016.01.020
  29. Murakami, M., Goncharov, A.F., Hirao, N., Masuda, R., Mitsui, T., Thomas, S.-M. and Bina, C.R., 2014, Highpressure radiative conductivity of dense silicate glasses with potential implications for dark magmas. Nature Communications, 5, 5428. https://doi.org/10.1038/ncomms6428
  30. Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X. and Burke, K., 2008, Restoring the density-gradient expansion for exchange in solids and surfaces. Physical Review Letters, 100, 136406. https://doi.org/10.1103/PhysRevLett.100.136406
  31. Prescher, C., Prakapenka, V.B., Stefanski, J., Jahn, S., Skinner, L.B. and Wang, Y., 2017, Beyond sixfold coordinated Si in $SiO_2$ glass at ultrahigh pressures. Proceedings of the National Academy of Sciences, 114, 10041-10046. https://doi.org/10.1073/pnas.1708882114
  32. Rost, S., Garnero, E.J., Williams, Q. and Manga, M., 2005, Seismological constraints on a possible plume root at the core-mantle boundary. Nature, 435, 666-669. https://doi.org/10.1038/nature03620
  33. Salmon, P.S., Moody, G.S., Ishii, Y., Pizzey, K. J., Polidori, A., Salanne, M., Zeidler, A., Buscemi, M., Fischer, H.E., Bull, C.L., Klotz, S., Weber, R., Benmore, C.J. and MacLeod, S.G., 2019, Pressure induced structural transformations in amorphous $MgSiO_3$ and $CaSiO_3$. Journal of Non-Crystalline Solids: X, 3, 100024. https://doi.org/10.1016/j.nocx.2019.100024
  34. Sidorin, I., Gurnis, M. and Helmberger, D.V., 1999, Evidence for a ubiquitous seismic discontinuity at the base of the mantle. Science, 286, 1326-1331. https://doi.org/10.1126/science.286.5443.1326
  35. Sternemann, C. and Wilke, M., 2016, Spectroscopy of low and intermediate Z elements at extreme conditions: In situ studies of Earth materials at pressure and temperature via X-ray Raman scattering. High Pressure Research, 36, 275-292. https://doi.org/10.1080/08957959.2016.1198903
  36. Teter, D.M., Hemley, R.J., Kresse, G. and Hafner, J., 1998, High Pressure Polymorphism in Silica. Physical Review Letters, 80, 2145-2148. https://doi.org/10.1103/PhysRevLett.80.2145
  37. Tsuchiya, T., Caracas, R. and Tsuchiya, J., 2004, First principles determination of the phase boundaries of high-pressure polymorphs of silica. Geophysical Research Letters, 31, L11610. https://doi.org/10.1029/2004GL019649
  38. Wang, Y., Sakamaki, T., Skinner, L.B., Jing, Z., Yu, T., Kono, Y., Park, C., Shen, G., Rivers, M.L. and Sutton, S. R., 2014, Atomistic insight into viscosity and density of silicate melts under pressure. Nature Communications, 5, 3241. https://doi.org/10.1038/ncomms4241
  39. Will, G., Bellotto, M., Parrish, W. and Hart, M., 1988, Crystal structures of quartz and magnesium germanate by profile analysis of synchrotron-radiation high-resolution powder data. Journal of Applied Crystallography, 21, 182-191. https://doi.org/10.1107/S0021889887011567
  40. Williams, Q. and Garnero, E.J., 1996, Seismic evidence for partial melt at the base of Earth's mantle. Science, 273, 1528-1530. https://doi.org/10.1126/science.273.5281.1528
  41. Wu, M., Liang, Y., Jiang, J.-Z. and Tse, J.S., 2012, Structure and properties of dense silica glass. Scientific Reports, 2, 398. https://doi.org/10.1038/srep00398
  42. Yi, Y.S. and Lee, S.K., 2010, Local electronic structures of $SiO_2$ polymorph crystals: Insights from O K-edge energyloss near-edge spectroscopy. Journal of the Mineralogical Society of Korea, 23, 403-411.
  43. Yi, Y.S. and Lee, S.K., 2012, Pressure-induced changes in local electronic structures of $SiO_2$ and $MgSiO_3$ polymorphs: Insights from ab initio calculations of O K-edge energy-loss near-edge structure spectroscopy. American Mineralogist, 97, 897-909. https://doi.org/10.2138/am.2012.3943
  44. Yi, Y.S. and Lee, S.K., 2014, Quantum chemical calculations of the effect of Si-O bond length on X-ray Raman scattering features for $MgSiO_3$ perovskite. Journal of the Mineralogical Society of Korea, 27, 1-15. https://doi.org/10.9727/jmsk.2014.27.1.1
  45. Yi, Y.S. and Lee, S.K., 2016, Atomistic origins of pressureinduced changes in the O K-edge x-ray Raman scattering features of $SiO_2$ and $MgSiO_3$ polymorphs: Insights from ab initio calculations. Physical Review B, 94, 094110. https://doi.org/10.1103/PhysRevB.94.094110
  46. Zeidler, A., Wezka, K., Rowlands, R.F., Whittaker, D.A. J., Salmon, P.S., Polidori, A., Drewitt, J.W.E., Klotz, S., Fischer, H.E., Wilding, M.C., Bull, C.L., Tucker, M.G. and Wilson, M., 2014, High-pressure transformation of $SiO_2$ glass from a tetrahedral to an octahedral network: A joint approach using neutron diffraction and molecular dynamics. Physical Review Letters, 113, 135501. https://doi.org/10.1103/PhysRevLett.113.135501
  47. Zhao, G., Mu, H.F., Tan, X.M., Wang, D.H. and Yang, C.L., 2014, Structural and dynamical properties of $MgSiO_3$ melt over the pressure range 200-500 GPa: Ab initio molecular dynamics. Journal of Non-Crystalline Solids, 385, 169-174. https://doi.org/10.1016/j.jnoncrysol.2013.11.024