References
-
Akins, J.A., Luo, S.-N., Asimow, P.D. and Ahrens, T.J., 2004, Shock-induced melting of
$MgSiO_3$ perovskite and implications for melts in Earth's lowermost mantle. Geophysical Research Letters, 31, L14612. https://doi.org/10.1029/2004GL020237 - Andrault, D., Fiquet, G., Guyot, F. and Hanfland, M., 1998, Pressure-induced Landau-type transition in stishovite. Science, 282, 720-724. https://doi.org/10.1126/science.282.5389.720
- Bergmann, U., Glatzel, P. and Cramer, S.P., 2002, Bulk-sensitive XAS characterization of light elements: from X-ray Raman scattering to X-ray Raman spectroscopy. Microchemical Journal, 71, 221-230. https://doi.org/10.1016/S0026-265X(02)00014-0
- Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D. and Luitz, J., 2001, WIEN2k (An augmented plane wave + local orbitals program for calculating crystal properties). Technische Universitat Wien, Austria.
- Chow, P., Xiao, Y.M., Rod, E., Bai, L.G., Shen, G.Y., Sinogeikin, S., Gao, N., Ding, Y. and Mao, H.-K., 2015, Focusing polycapillary to reduce parasitic scattering for inelastic x-ray measurements at high pressure. Review of Scientific Instruments, 86, 072203. https://doi.org/10.1063/1.4926890
-
Cordier, P., Mainprice, D. and Mosenfelder, J.L., 2004, Mechanical instability near the stishovite-
$CaCl_2$ phase transition. European journal of mineralogy, 16, 387-399. https://doi.org/10.1127/0935-1221/2004/0016-0387 - Fukui, H., Kanzaki, M., Hiraoka, N. and Cai, Y.Q., 2008, Coordination environment of silicon in silica glass up to 74 GPa: An x-ray Raman scattering study at the silicon L-edge. Physical Review B, 78, 012203. https://doi.org/10.1103/PhysRevB.78.012203
- Fukui, H., Kanzaki, M., Hiraoka, N. and Cai, Y.Q., 2009, X-ray Raman scattering for structural investigation of silica/silicate minerals. Physics and Chemistry of Minerals, 36, 171-181. https://doi.org/10.1007/s00269-008-0267-x
- Hebert, C., 2007, Practical aspects of running the WIEN2k code for electron spectroscopy. Micron, 38, 12-28. https://doi.org/10.1016/j.micron.2006.03.010
- Hebert, C., Luitz, J. and Schattschneider, P., 2003, Improvement of energy loss near edge structure calculation using Wien2k. Micron, 34, 219-225. https://doi.org/10.1016/S0968-4328(03)00030-1
-
Karki, B.B. and Stixrude, L.P., 2010, Viscosity of
$MgSiO_3$ liquid at Earth's mantle conditions: Implications for an early magma ocean. Science, 328, 740-742. https://doi.org/10.1126/science.1188327 -
Khim, H., Yi, Y.S. and Lee, S.K., 2017, Core-hole effect on partial electronic density of state and O K-edge X-ray Raman scattering spectra of high-pressure
$SiO_2$ phases. Journal of the Mineralogical Society of Korea, 30, 59-70. https://doi.org/10.9727/jmsk.2017.30.2.59 -
Kim, Y.-H., Yi, Y.S., Kim, H.-I., Chow, P., Xiao, Y., Shen, G. and Lee, S. K., 2019, Structural transitions in
$MgSiO_3$ glasses and melts at the core-mantle boundary observed via inelastic X-ray scattering. Geophysical Research Letters, 46, 13756-13764. https://doi.org/10.1029/2019GL085889 -
Kim, Y.-H., Yi, Y.S., Chow, P., Xiao, Y., Ji, C., Shen, G. and Lee, S.K., Densification of
$SiO_2$ crystals and glasses at megabar pressures: Insights from Si$L_{2,3}$ -edge X-ray Raman scattering. in preparation. - Kingma, K.J., Cohen, R.E., Hemley, R.J. and Mao, H.K., 1995, Transformation of stishovite to a denser phase at lower-mantle pressures. Nature, 374, 243-245. https://doi.org/10.1038/374243a0
-
Kono, Y., Shibazaki, Y., Kenney-Benson, C., Wang, Y. and Shen, G., 2018, Pressure-induced structural change in
$MgSiO_3$ glass at pressures near the Earth's core-mantle boundary. Proceedings of the National Academy of Sciences, 115, 1742-1747. https://doi.org/10.1073/pnas.1716748115 - Lee, S.K., 2018, Amorphous oxides under extreme compression: Insights from solid-state nuclear magnetic resonance and inelastic X-ray scattering. Physics and High Technology, 27, 19-28. https://doi.org/10.3938/PhiT.27.014
- Lee, S.K., Eng, P.J. and Mao, H.K., 2014, Probing of pressure- Induced bonding transitions in crystalline and amorphous Earth materials: Insights from X-ray Raman scattering at high pressure. In Spectroscopic methods in mineralology and materials sciences (eds. Henderson, G. S., Neuville, D. R., and Downs, R. T.), Mineralogical Society of America, Chantilly, VA, 139-174.
- Lee, S.K., Eng, P.J., Mao, H.K. and Shu, J. F., 2008a, Probing and modeling of pressure-induced coordination transformation in borate glasses: Inelastic x-ray scattering study at high pressure. Physical Review B, 78, 214203. https://doi.org/10.1103/PhysRevB.78.214203
- Lee, S.K., Eng, P.J., Mao, H.K., Meng, Y. and Shu, J., 2007, Structure of alkali borate glasses at high pressure: B and Li K-edge inelastic X-ray scattering study. Physical Review Letters, 98, 105502. https://doi.org/10.1103/PhysRevLett.98.105502
- Lee, S.K., Kim, Y.-H., Chow, P., Xiao, Y., Ji, C. and Shen, G., 2018, Amorphous boron oxide at megabar pressures via inelastic X-ray scattering. Proceedings of the National Academy of Sciences, 115, 5855-5860. https://doi.org/10.1073/pnas.1800777115
-
Lee, S.K., Eng, P.J., Mao, H.K., Meng, Y., Newville, M., Hu, M.Y. and Shu, J. F., 2005, Probing of bonding changes in
$B_2O_3$ glasses at high pressure with inelastic Xray scattering. Nature Materials, 4, 851-854. https://doi.org/10.1038/nmat1511 -
Lee, S.K., Kim, Y.-H., Yi, Y.S., Chow, P., Xiao, Y.M., Ji, C. and Shen, G.Y., 2019, Oxygen quadclusters in
$SiO_2$ glass above megabar pressures up to 160 GPa revealed by Xray Raman scattering. Physical Review Letters, 123, 235701. https://doi.org/10.1103/PhysRevLett.123.235701 -
Lee, S.K., Park, S.Y., Kim, H.-I., Tschauner, O., Asimow, P., Bai, L., Xiao, Y. and Chow, P., 2012, Structure of shock compressed model basaltic glass: Insights from O K-edge X-ray Raman scattering and high-resolution
$^{27}Al$ NMR spectroscopy. Geophysical Research Letters, 39, L05306. -
Lee, S.K., Lin, J.F., Cai, Y.Q., Hiraoka, N., Eng, P. J., Okuchi, T., Mao, H.K., Meng, Y., Hu, M.Y., Chow, P., Shu, J., Li, B., Fukui, H., Lee, B.H., Kim, H.N. and Yoo, C.S., 2008b, X-ray Raman scattering study of
$MgSiO_3$ glass at high pressure: Implication for triclustered$MgSiO_3$ melt in Earth's mantle. Proceedings of the National Academy of Sciences, 105, 7925-7929. https://doi.org/10.1073/pnas.0802667105 -
Lin, J.F., Fukui, H., Prendergast, D., Okuchi, T., Cai, Y. Q., Hiraoka, N., Yoo, C.S., Trave, A., Eng, P., Hu, M. Y. and Chow, P., 2007, Electronic bonding transition in compressed
$SiO_2$ glass. Physical Review B, 75, 012201. https://doi.org/10.1103/physrevb.75.012201 - Momma, K. and Izumi, F., 2011, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 1272-1276. https://doi.org/10.1107/S0021889811038970
-
Moulton, B.J. A., Henderson, G.S., Fukui, H., Hiraoka, N., de Ligny, D., Sonneville, C. and Kanzaki, M., 2016, In situ structural changes of amorphous diopside (CaMg-
$Si_2O_6$ ) up to 20 GPa: A Raman and O K-edge X-ray Raman spectroscopic study. Geochimica et Cosmochimica Acta, 178, 41-61. https://doi.org/10.1016/j.gca.2016.01.020 - Murakami, M., Goncharov, A.F., Hirao, N., Masuda, R., Mitsui, T., Thomas, S.-M. and Bina, C.R., 2014, Highpressure radiative conductivity of dense silicate glasses with potential implications for dark magmas. Nature Communications, 5, 5428. https://doi.org/10.1038/ncomms6428
- Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X. and Burke, K., 2008, Restoring the density-gradient expansion for exchange in solids and surfaces. Physical Review Letters, 100, 136406. https://doi.org/10.1103/PhysRevLett.100.136406
-
Prescher, C., Prakapenka, V.B., Stefanski, J., Jahn, S., Skinner, L.B. and Wang, Y., 2017, Beyond sixfold coordinated Si in
$SiO_2$ glass at ultrahigh pressures. Proceedings of the National Academy of Sciences, 114, 10041-10046. https://doi.org/10.1073/pnas.1708882114 - Rost, S., Garnero, E.J., Williams, Q. and Manga, M., 2005, Seismological constraints on a possible plume root at the core-mantle boundary. Nature, 435, 666-669. https://doi.org/10.1038/nature03620
-
Salmon, P.S., Moody, G.S., Ishii, Y., Pizzey, K. J., Polidori, A., Salanne, M., Zeidler, A., Buscemi, M., Fischer, H.E., Bull, C.L., Klotz, S., Weber, R., Benmore, C.J. and MacLeod, S.G., 2019, Pressure induced structural transformations in amorphous
$MgSiO_3$ and$CaSiO_3$ . Journal of Non-Crystalline Solids: X, 3, 100024. https://doi.org/10.1016/j.nocx.2019.100024 - Sidorin, I., Gurnis, M. and Helmberger, D.V., 1999, Evidence for a ubiquitous seismic discontinuity at the base of the mantle. Science, 286, 1326-1331. https://doi.org/10.1126/science.286.5443.1326
- Sternemann, C. and Wilke, M., 2016, Spectroscopy of low and intermediate Z elements at extreme conditions: In situ studies of Earth materials at pressure and temperature via X-ray Raman scattering. High Pressure Research, 36, 275-292. https://doi.org/10.1080/08957959.2016.1198903
- Teter, D.M., Hemley, R.J., Kresse, G. and Hafner, J., 1998, High Pressure Polymorphism in Silica. Physical Review Letters, 80, 2145-2148. https://doi.org/10.1103/PhysRevLett.80.2145
- Tsuchiya, T., Caracas, R. and Tsuchiya, J., 2004, First principles determination of the phase boundaries of high-pressure polymorphs of silica. Geophysical Research Letters, 31, L11610. https://doi.org/10.1029/2004GL019649
- Wang, Y., Sakamaki, T., Skinner, L.B., Jing, Z., Yu, T., Kono, Y., Park, C., Shen, G., Rivers, M.L. and Sutton, S. R., 2014, Atomistic insight into viscosity and density of silicate melts under pressure. Nature Communications, 5, 3241. https://doi.org/10.1038/ncomms4241
- Will, G., Bellotto, M., Parrish, W. and Hart, M., 1988, Crystal structures of quartz and magnesium germanate by profile analysis of synchrotron-radiation high-resolution powder data. Journal of Applied Crystallography, 21, 182-191. https://doi.org/10.1107/S0021889887011567
- Williams, Q. and Garnero, E.J., 1996, Seismic evidence for partial melt at the base of Earth's mantle. Science, 273, 1528-1530. https://doi.org/10.1126/science.273.5281.1528
- Wu, M., Liang, Y., Jiang, J.-Z. and Tse, J.S., 2012, Structure and properties of dense silica glass. Scientific Reports, 2, 398. https://doi.org/10.1038/srep00398
-
Yi, Y.S. and Lee, S.K., 2010, Local electronic structures of
$SiO_2$ polymorph crystals: Insights from O K-edge energyloss near-edge spectroscopy. Journal of the Mineralogical Society of Korea, 23, 403-411. -
Yi, Y.S. and Lee, S.K., 2012, Pressure-induced changes in local electronic structures of
$SiO_2$ and$MgSiO_3$ polymorphs: Insights from ab initio calculations of O K-edge energy-loss near-edge structure spectroscopy. American Mineralogist, 97, 897-909. https://doi.org/10.2138/am.2012.3943 -
Yi, Y.S. and Lee, S.K., 2014, Quantum chemical calculations of the effect of Si-O bond length on X-ray Raman scattering features for
$MgSiO_3$ perovskite. Journal of the Mineralogical Society of Korea, 27, 1-15. https://doi.org/10.9727/jmsk.2014.27.1.1 -
Yi, Y.S. and Lee, S.K., 2016, Atomistic origins of pressureinduced changes in the O K-edge x-ray Raman scattering features of
$SiO_2$ and$MgSiO_3$ polymorphs: Insights from ab initio calculations. Physical Review B, 94, 094110. https://doi.org/10.1103/PhysRevB.94.094110 -
Zeidler, A., Wezka, K., Rowlands, R.F., Whittaker, D.A. J., Salmon, P.S., Polidori, A., Drewitt, J.W.E., Klotz, S., Fischer, H.E., Wilding, M.C., Bull, C.L., Tucker, M.G. and Wilson, M., 2014, High-pressure transformation of
$SiO_2$ glass from a tetrahedral to an octahedral network: A joint approach using neutron diffraction and molecular dynamics. Physical Review Letters, 113, 135501. https://doi.org/10.1103/PhysRevLett.113.135501 -
Zhao, G., Mu, H.F., Tan, X.M., Wang, D.H. and Yang, C.L., 2014, Structural and dynamical properties of
$MgSiO_3$ melt over the pressure range 200-500 GPa: Ab initio molecular dynamics. Journal of Non-Crystalline Solids, 385, 169-174. https://doi.org/10.1016/j.jnoncrysol.2013.11.024