DOI QR코드

DOI QR Code

공기 중 광대역 초음파 방사용 압전 박막 기반 초소형 초음파 트랜스듀서의 설계

Design of piezoelectric micro-machined ultrasonic transducer for wideband ultasonic radiation in air

  • 안홍민 (포항공과대학교 기계공학과) ;
  • 진재혁 (포항공과대학교 기계공학과) ;
  • 문원규 (포항공과대학교 기계공학과)
  • 투고 : 2019.12.12
  • 심사 : 2020.01.11
  • 발행 : 2020.03.31

초록

본 논문에서는 공기 중 광대역 초음파 방사용 압전 박막 기반 초소형 초음파 트랜스듀서(piezoelectric Micro-machined Ultrasonic Transducer, pMUT)의 설계 연구가 진행되었다. 하나의 트랜스듀서로 광대역을 달성하는 방법 중 하나는 다공진 시스템으로 설계하는 것이다. 새로운 pMUT은 박막 구조의 앞면과 뒷면에 적절한 음향 구조를 추가하여 다공진 시스템을 구현하도록 설계되었다. 박막 앞쪽은 도파관 구조로 모델링된 방사 파트로, 박막 뒷쪽은 음향 공동으로 모델링된 패키징 파트로 이루어져있다. 박막 파트, 방사 파트, 패키징 파트로 구성된 새로운 pMUT은 집중 변수 모델로 설계되었으며, 최종적으로 유한요소해석으로 검증되었다. 최종 설계된 pMUT은 102 kHz ~ 132 kHz (-3 dB)의 주파수 대역을 달성하였다.

In this paper, the design of piezoelectric Micro-machined Ultrasonic Transducer (pMUT) for wideband ultrasonic radiation in air was investigated. One of the methods to achieve wide frequency bandwidth in single device is modeling the transducer to multi-resonance system. The new pMUT was designed as a multi-resonance system with the addition of a suitable acoustic structure to the front and back of a thin film structure. A new pMUT consisting of thin film parts, radiation parts, and packaging parts is designed with a Lumped Parameter Model (L.P.M). Finally, it was validated as a Finite Element Method (FEM) simulation. The final designed pMUT achieved a frequency band of 102 kHz ~ 132 kHz (-3 dB).

키워드

참고문헌

  1. K. Nicolaides, L. Nortman, M. Shatalov, and J. Tapson, "Development of a wideband underwater transmitting transducer with over 150 kHz bandwidth and high transmitting levels using 1-3 piezocomposite materials," Proc. the International Congress on Ultrasonics, 1345 (2007).
  2. K. K. Shung and M. Zippuro, "Ultrasonic transducers and arrays," IEEE Engineering in Medicine and Biology Magazine, 15, 20-30 (1996). https://doi.org/10.1109/51.544509
  3. J. H. Kim, J. T. Kim, J. O. Kim, and J. K. Min, "Acoustic characteristics of a loudspeaker obtained by vibration and acoustic analyses" (in Korean), Trans. Korean Soc. Noise Vib. Eng. 21, 1742-1756 (1997).
  4. Y. Hwang, A new stepped plate source trnasducer for broadband parametric array sounds, (Ph.D. thesis. Pohang University of Science and Technology, 2016).
  5. K. H. Been, S. W. Nam, H. S. Lee, H. S. Seo, and W. K. Moon, "A lumped parameter model of the single free-flooded ring transducer," J. Acoust. Soc. Am. 141, 4740-4755 (2017). https://doi.org/10.1121/1.4986937
  6. Y. Je, H. Lee, K. Been, and W. Moon, "A micromachined efficient parametric array loudspeaker with a wide radiation frquency band," J. Acoust. Soc. Am. 137, 1732-1743 (2015). https://doi.org/10.1121/1.4916597
  7. Y. Je, H. Lee, and W. Moon, "The impact of micrhmachined ultrasonic radiators on the efficiency of transducers in air," Ultrasonics, 53, 1124-1134 (2013). https://doi.org/10.1016/j.ultras.2013.02.008
  8. S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd ED. (McGraw-Hill Companies, Singapore, 1950), pp. 51-61.
  9. R. D. Blevins, Formulas for Natural Frequency and Mode Shape, 2nd ED. (Krieger publishing company, Florida, 1984), pp. 233-245.
  10. L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Physical Acoustics (Wiley, New York, 2000), pp. 107-109, 171-209.
  11. D. T. Blackstock, Fundamentals of Physical Acoustics (Wiley, New York, 2000), pp. 428-433.
  12. I. Chopra and J. Sirohi, Smart Structures Theory (Cambridge University Press, New York, 2014), pp. 122-145.