DOI QR코드

DOI QR Code

Prevention of Protein Loss Using A Shield Coating According to Moisture Behavior in Human Hair

수분거동 패턴에 따른 차폐막 설정을 통한 모발단백질 소실방지

  • Received : 2020.03.10
  • Accepted : 2020.03.23
  • Published : 2020.03.30

Abstract

To prevent loss of hair protein during hair washing process by water through, a shield coating the pathway of water molecules was studied. Hydrophobic virgin hair, hydrophilic hair, which was damaged only methyleicosanoic acid (18-MEA) on the surface, and a repaired hair re-bound 18-MEA, were prepared and water mass changes by as heat were measured. Results showed that hydrophobic hairs followed bi-exponential function of 39 s and 151 s and other two hairs exhibited fast- and mono-exponential decay with 83 s, reflecting the extraction of water molecules without any resistance at the hydrophobic surface. On the assumption that hydrophobic surface resists an extraction of protein in water during the wash, the protein concentrations were compared from the hair of hydrophobic and hydrophilic surface. The extracted hair proteins were 179 and 148 ㎍/mL from the hair coated with hydrophilic polyethylene glycol (PEG) and hydrophobic polydimethylsiloxane (PDMS), respectively. This study suggested that hydrophobic coating on the hair surface could be used to prevent protein loss in wash, represented by LFM. In conclusion, this research provides some useful information to contribute to the development of hair washing products that can prevent protein loss in the cleaning process by granting hydrophobic coatings.

세정 과정에서 물에 의한 단백질 소실을 차폐막을 통해서 방지 하고자 먼저 모발 내부의 물 거동 경로를 파악하였다. 이를 위해서 소수성을 가지는 건강한 모발과, 모발 내부는 정상이지만 표면의 최외곽 지질층에서 18-methyleicosanoic acid (18-MEA)만 소실시켜 친수성이 된 모발과, 다시 표면에 18-MEA를 결합시킨 회복모를 이용해서 모발 수분의 거동을 파악하였다. 모발에 열을 가할 때 일어나는 수분 증발에 따른 질량 변화를 관찰한 결과 표면이 소수성인 모발들은 39 s와 151 s의 두개의 시간 상수로 감소하였다. 이에 반해 표면이 친수성으로 변한 손상 모발에서는 83 s의 하나의 빠른 시간 상수로 감소함을 확인하였는데, 이는 모발 내부에 있는 비결합과 결합 수분들이 외곽으로 빠져나올때 모발 표면에 소수성 막이 없음으로써 바로 용출됨을 반증한다. 따라서 세정과정에서 모발 내부의 단백질 용출을 효율적으로 방지하기 위해서는 모발 표면을 소수성 코팅하여 물분자의 거동을 저지시킬 필요가 있을 것이라는 가정한 결과 친수성 polyethylene glycol (PEG)를 코팅한 경우 179 ㎍/mL의 단백질이 용출한데 반해서 소수성 polydimethylsiloxane (PDMS)를 코팅한 모발은 보다 적은 148 ㎍/mL를 용출하였으며, 표면을 소수성 및 친수성으로 코팅하여 모발 내부 단백질을 검량하여 비교하였다. 마침내 소수성 차폐막이 세정 과정에서 모발 단백질 소실을 방어하는 방법이 됨을 확인하였고, 이 소수성 지표를 lateral force microscopy (LFM) 값으로 환산하여 정리하였다. 마침내 이 연구 결과물은 세정 과정에서 발생하는 단백질 소실을 소수성 코팅막을 부여함으로써 막을 수 있는 모발 세정제품 개발에 기여할 수 있다.

Keywords

References

  1. J. A. Seo, I. H. Bae, W H. Jang, J. H. Kim, S. Y. Bak, S. H. Han, Y. H. Park, and K. M. Lim, Hydrogen peroxide and monoethanolamine are the key causative ingredients for hair dye-induced dermatitis and hair loss, J. Dermatol. Sci., 66(1), 12 (2012). https://doi.org/10.1016/j.jdermsci.2011.12.015
  2. R. Dawber, Hair: its structure and response to cosmetic preparations, Clin. Dermatol., 14(1), 105 (1996). https://doi.org/10.1016/0738-081X(95)00117-X
  3. C. R. Robbins, Chemical and physical behavior of human hair, eds C. R. Robbins, and R. Clarence, 94, Springer, Heidelberg (2012).
  4. S. H. Song, H. Y. Kim and S. Son, The method to determine amount of adsorbed oil in wash using absorption spectroscopy, J. Soc. Cosmet. Sci. Korea, 45(2), 105 (2019). https://doi.org/10.15230/SCSK.2019.45.2.105
  5. R. C. C. Wagner and I. Joekes, Hair protein removal by sodium dodecyl sulfate, Colloids Surf B Biointerfaces, 41(1), 7 (2005). https://doi.org/10.1016/j.colsurfb.2004.10.023
  6. N. Nicolaides, and S. Rothman, Studies on the chemical composition of human hair fat, The overall composition with regard to age, sex and race, J. Invest. Dermatol., 21(1), 9 (1953). https://doi.org/10.1038/jid.1953.63
  7. C. R. Robbins, The cell membrance complex: three related but different cellular cohesion components of mammalian hair fibers, J Cosmet Sci, 60(4), 437 (2009).
  8. M. Korte, S. Akari, H. Kuhn, N. Baghdadli, H. Mohwald, and G. S. Luengo, Distribution and localization of hydrophobic and ionic chemical groups at the surface of bleached human hair fibers, Langmuir, 30(41), 12124 (2014). https://doi.org/10.1021/la500461y
  9. U. Natarajan and C. R. Robbins, The thickness of 18-MEA on an ultra-high sulfur protein surface by molecular modeling, J Cosmet Sci, 61(6), 467 (2010).
  10. H. Tanamachi, S. Tokunaga, N. Tanji, M. Oguri, and S. Inoue, 18-MEA and hair appearance, J Cosmet Sci, 61(2), 147 (2010).
  11. E. Kim, S. Son, and C. Lee, Recovery of covalently linked fatty acid monolayer on the hair surface using biomimetic lipid, J. Soc.Cosmet. Sci. Korea, 38(2), 139 (2012).
  12. K. M. Belletti, I. H. Feferman, T. R. Mendes, A. D. Piaceski, V. F. Monteiro, A. Valentini, E. R. Leite, and E. Longo, Evaluation of hair fiber hydration by differential scanning calorimetry, gas chromatography, and sensory analysis, J Cosmet Sci, 54(6), 527 (2003).
  13. T. Gao, Evaluation of hair humidity resistance/ moisturization from hair elasticity, J Cosmet Sci, 58(4), 393 (2007).
  14. Y. Lee, Y. Kim, H. Hyun, L. Pi, X. Jin, and W. S. Lee, Hair shaft damage from heat and drying time of hair dryer, Ann Dermatol, 23(4), 455 (2011). https://doi.org/10.5021/ad.2011.23.4.455
  15. R. Crawford, C. R. Robbins, J. Curran, and K. Chesney, A hysteresis in heat dried hair, J. Soc. Cosmet. Chem., 32(1), 27 (1981).
  16. C. R. R. C. Lima, R. A. A. Couto, T. B. Freire, A. M. Goshiyama, A. R. Baby, M. V. R. Velasco, V.R. L. Constantino, and J. D. R. Matos, Heat-damaged evaluation of virgin hair, J Cosmet Dermatol, 18(0) 1885 (2019). https://doi.org/10.1111/jocd.12892
  17. P. Cyganik, A. Budkowski, J. Raczkowsak, and Z. Postawa, AFM/LFM surface studies of a ternary polymer blend cast on substrates covered by a self-assembled monolayer, Surf. Sci., 507-510, 700 (2002). https://doi.org/10.1016/S0039-6028(02)01339-0
  18. S. Son, S. W. Kim, M. K. Park, S. H. Song, S. J. Park, S. L. Hwang, and S. M. Lee, Effect of the coacervate systems in shampoo formulation on hair damage, J. Soc. Cosmet. Sci. Korea, 44(2), 141 (2018). https://doi.org/10.15230/SCSK.2018.44.2.141