DOI QR코드

DOI QR Code

Optimization of Quantification Method of Ergotioneine in Pleurotus eryngii var. ferulae and Its Anti-Oxidant Activity

아위느타리버섯 추출물의 에르고티오네인(Ergothioneine) 정량법 및 항산화 활성에 관한 연구

  • Park, Seung Hee (Department of Nano-Bioengineering, Incheon National University) ;
  • Lee, Jeong Min (Department of Nano-Bioengineering, Incheon National University) ;
  • Lee, Seung Ho (Department of Nano-Bioengineering, Incheon National University)
  • 박승희 (인천대학교 생명공학부 나노바이오 전공) ;
  • 이정민 (인천대학교 생명공학부 나노바이오 전공) ;
  • 이승호 (인천대학교 생명공학부 나노바이오 전공)
  • Received : 2020.03.03
  • Accepted : 2020.03.24
  • Published : 2020.03.30

Abstract

This study was conducted to establish optimal high pressure liquid chromatography (HPLC) conditions for estimation of the ergothioneine contents in the three kinds of water extracts of Pleurotus eryngii var. ferulae (Meaksong, Beesan No. 2, Baekwhang). By comparing the four different HPLC conditions, optimun condition for quantifying the contents of ergotioneine was established (shodex HILIC column, 35 ℃, 1.0 mL/min). By this method, the contents of ergothioneine in Meakong (3.04 ± 0.02 mg/g), Beesan No. 2 (3.15 ± 0.05 mg/g) and Baewhang (1.13 ± 0.07 mg/g) were estimated. DPPH and ABTS radical scavenger activities of these three kinds of Pleurotus eryngii var. ferulae were estimated and the contents of total phenol and flavonoid were also estimated. Taken together, this study establish an optimun HPLC condition for determining the ergothioneine contents in water extracts of Pleurotus eryngii var. ferulae. Furthermore water extracts of Maesong and Beesan No. 2 showed relatively high contents of ergothioneine and antioxidant activity, suggesting that these materials could be used as potential antioxidant in developing functional cosmetics.

본 연구는 아위느타리버섯(Pleurotus eryngii var. ferulae)에 함유되어 있는 항산화 물질인 에르고티오네인의 정확한 함량을 분석할 수 있는 최적 분석법을 확립하고 아위느타리버섯 3종(맥송, 비산 2호, 백황)의 에르고티오네인 함량 및 항산화 능력을 검증하고자 수행되었다. 서로 다른 네 가지의 HPLC 분석 조건을 비교하여 아위느타리버섯 열수 추출물의 에르고티오네인 함량을 정량할 수 있는 최적 조건(shodex HILIC column, 35 ℃, 1.0 mL/min)을 확립하였으며 이를 이용하여 3종류의 아위느타리버섯 열수 추출물에 포함된 에르고티오네인 함량을 결정하였다(맥송: 3.04 ± 0.02 mg/g, 비산 2호: 3.15 ± 0.05 mg/g, 백황: 1.13 ± 0.07 mg/g). 또한, 3종류의 아위느타리버섯 열수추출물의 DPPH 및 ABTS 라디컬 소거활성을 측정하였으며, 총 페놀 함량 및 총 플라보노이드 함량을 측정하였다. 결론적으로 본 연구를 통하여 아위느타리버섯 열수 추출물로부터 에르고티오네인 함량을 가장 정확하게 측정할 수 있는 분석법을 확립하였으며, 맥송 및 비산 2호 아위느타리버섯 열수추출물 소재는 높은 에르고티오네인 함량과, 높은 항산화 활성을 보유하고 있는 것으로 밝혀져 향후 항산화 효능을 보유한 기능성 화장품 개발에 이용될 수 있을 것으로 판단된다.

Keywords

References

  1. K. R. Martin and J. C. Barrett, Reactive oxygen species as double-edged swords in cellular processes: low-dose cell signaling versus high-dose toxicity, Hum Exp Toxicol, 21(2), 71 (2002). https://doi.org/10.1191/0960327102ht213oa
  2. E. Birben, U. M. Sahiner, C. Sackesen, S. Erzurum, and O. Kalayci, Oxidative stress and antioxidant defense, World Allergy Organ. J, 5(1), 9 (2012). https://doi.org/10.1097/WOX.0b013e3182439613
  3. B. Halliwell, I. K. Cheah, and R. M. Y. Tang, Ergothioneine - a diet-derived antioxidant with therapeutic potential, FEBS Lett., 592(20), 3357 (2018). https://doi.org/10.1002/1873-3468.13123
  4. I. K. Cheah, and B. Halliwell, Ergothioneine; antioxidant potential, physiological function and role in disease, Biochim. Biophys. Acta., 1822(5), 784 (2012). https://doi.org/10.1016/j.bbadis.2011.09.017
  5. I. K. Cheah, R. M. Tang, T. S. Yew, K. H. Lim, and B. Halliwell, Administration of pure ergothioneine to healthy human subjects: Uptake, metabolism, and effects on biomarkers of oxidative damage and inflammation, Antioxid.. Redox Signal., 26(5), 193 (2017). https://doi.org/10.1089/ars.2016.6778
  6. D. Turck, J. Bresson, B. Burlingame, T. Dean, S. Fairweather-Tait, M. Heinonen, K. I. Hirsch-Ernst, I. Mangelsdorf, H. J. McArle, A. Naska, M. Neuhauser- Berthold, G. Nowicka, K. Pentieva, Y. Sanz, A. Siani, A. Sjodin, M. Stern, D. Tome, M. Vinceti, P. Willatts, K. Engel, R. Marchelli, A. Poting, M. Poulsen, J. R. Schlatter, R. Ackerl, and H. V. Loveren, Statement on the safety of synthetic L-ergothioneine as a novel food - supplementary dietary exposure and safety assessment for infants and young children, pregnant and breastfeeding women, E. F . S. A J ourna l., 15(11), 5060 (2017).
  7. M. Y Kim, l. M. Chung, S. J. Lee, J. K. Ahn, E. H. Kim, M. J. Kim, S. L. Kim, H. I. Moon, H. M. Ro, E. Y. Kang, S. H. Seo, and H. K. Song, Comparison of free amino acid, carbohydrates concentrations in Korean edible and medicinal mushrooms, Food Chem, 113(2), 386 (2009). https://doi.org/10.1016/j.foodchem.2008.07.045
  8. M. Zhang, S. W. Cui, P. C. K. Cheung, and Q. Wang, Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity, Trends Food Sci. Technol., 18(1), 4 (2007). https://doi.org/10.1016/j.tifs.2006.07.013
  9. J. L. Mau, H. C. Lin, and S. F. Song, Antioxidant properties of several specialty mushrooms, Food Resl., 35(6), 519 (2002). https://doi.org/10.1016/S0963-9969(01)00150-8
  10. N. J. Dubost, B. Ou, and R. B. Beelman, Quantification of polyphenols and ergothioneine in cultivated mushrooms and correlation to total antioxidant capacity, Food Chem., 105(2), 727, (2007). https://doi.org/10.1016/j.foodchem.2007.01.030
  11. Y. Choi, S. M. Lee, J. Chun, H. B. Lee, and J. Lee, Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom, Food Chem, 99(2), 381 (2006). https://doi.org/10.1016/j.foodchem.2005.08.004
  12. C. I. G. Tuberoso, M. Boban, E. Bifulco, D. Budimir, and F. M. Pirisi, Antioxidant capacity and vasodilatory properties of Mediterranean food: The case of Cannonau wine, myrtle berries liqueur and strawberry-tree honey, Food Chem, 140(4), 686 (2013). https://doi.org/10.1016/j.foodchem.2012.09.071
  13. F S. Reis, A. Martins, L. Barros, and I. C. Ferreira, Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: a comparative study between in vivo and in vitro samples, Food Chem. Toxicol., 50(5), 1201 (2012). https://doi.org/10.1016/j.fct.2012.02.013
  14. E. J. Kim, H. J. Lee, H. J. Kim, H. S. Nam, M. K. Lee, H. Y. Kim, J. H. Lee, Y. S. Kang, J. O. Lee, and H. Y. Kim, Comparison of colorimetric methods for the determination of flavonoid in propolis extract products, KOREAN J. FOOD SCI. THCHNOL, 37(6), 918 (2005).
  15. D. B. Melville, W. H. Horner, and R. Lubschez, Tissue ergothioneine, J. Biol. Chem., 206(1), 221 (1954). https://doi.org/10.1016/S0021-9258(18)71313-6
  16. T. K. Shires, M. C. Brummel, J. S. Pulido, and L. D. Stegink, Ergothioneine distribution in bovine and porcine ocular tissues, Comp. Biochem. Physiol. C, Pharmacol. Toxicol. Endocrinol., 117(1), 117 (1997). https://doi.org/10.1016/S0742-8413(96)00223-X
  17. H. B. Salt, The ergothioneine content of the blood in health and disease, Biochem J., 25(.5), 1712 (1931). https://doi.org/10.1042/bj0251712
  18. I. K. Cheah, L. T. Ng, L. F. Ng, V. Y. Lam, J. Gruber, C. Y. W. Huang, F. Q. Goh, K. H. C. Lim, and B. Halliwell, Inhibition of amyloid-induced toxicity by ergothioneine in a transgenic Caenorhabditis elegans model, FEBS Lett., 593(16), 2139 (2019). https://doi.org/10.1002/1873-3468.13497
  19. R. D. Williamson, F. P. McCarthy, S. Manna, E. Groarke, D. B. Kell, L. C. Kenny, and C. M. McCarthy, L-(+)-ergothioneine significantly improves the clinical characteristics of preeclampsia in the reduced uterine perfusion pressure rat model, Hypertension, 75(2), 561 (2020). https://doi.org/10.1161/hypertensionaha.119.13929
  20. Q. Liu, W. Zhang, H. Wang, Y. Li, W. Liu, Q. Wang, D. Liu, N. Chen, and and W. Jiang, Validation of a HILIC method for the analysis of ergothioneine in fermentation broth, J Chromatogr Sci, 54(6), 934 (2016). https://doi.org/10.1093/chromsci/bmw023
  21. K. Obayashi, K. Kurihara, Y. Okano, H. Masaki, and D. B. Yarosh, L-ergothioneine scavenges superoxide and singlet oxygen and suppresses TNF-alpha and MMP-1 expression in UV-irradiated human dermal fibroblasts, J Cosmet Sci, 56(1), 17 (2005).
  22. Y. C. Hseu, Y. Vudhya Gowrisankar, X. Z. Chen, Y. C. Yang, and H. L. Yang, The antiaging activity of ergothioneine in UVA-irradiated human dermal fibroblasts via the inhibition of the AP-1 pathway and the activation of Nrf2-mediated antioxidant genes, Oxid. Med Cell Longev, 2020, 2576823 (2020).