DOI QR코드

DOI QR Code

Study on the Storage Stability of Horse Fat in Jeju

제주산 말지방(Horse Fat)의 저장 안정성 향상에 관한 연구

  • Kim, Mi Seon (Department of Chemistry and Cosmetics, College of National Science, Jeju National University) ;
  • Yoon, Kyung-Sup (Department of Chemistry and Cosmetics, College of National Science, Jeju National University)
  • 김미선 (제주대학교 화학.코스메틱스학과) ;
  • 윤경섭 (제주대학교 화학.코스메틱스학과)
  • Received : 2020.02.10
  • Accepted : 2020.03.19
  • Published : 2020.03.30

Abstract

Horse fat is known to be an effective ingredient in Asia, and the horse fat itself, which is mixed with other ingredients at the additive level, is often sold as a finished product. In this case, physical properties of the horse fat raw material are important. Many horse fats produced in Korea (Jeju) have low temperature stability, so if not stored at low temperatures, segregation may occur. In the case of Japanese horse fat, it is partially hydrogenated or is used the solid phase as the horse fat by separating the liquid phase and the solid phase that is harder and more stable than the horse fat of Jeju. In this study, the physical properties were tested to improve the temperature stability even without the partial hydrogenation process of Jeju horse fat. Various oil gelling agents were used in the study. Results confirmed that the physical properties of the hydroxystearic acid added Jeju horse fat were improved. In addition, stability evaluations at temperatures of 25 ℃, 40 ℃, 45 ℃ and flow behavior evaluations at temperatures of 25 ℃, 30 ℃, 40 ℃ were performed for Jeju horse fat with hydroxystearic acid, 100% Jeju horse fat, and 100% Japanese horse fat. Results showed that the Jeju horse fat improved in flow behavior by adding hydroxystearic acid similar to that of Japanese horse fat. In addition, when the crystal state was observed under a microscope, the thermal stability was improved by decreasing the size of the needle-type crystals with the addition of hydroxystearic acid. Jeju horse fat containing hydroxystearic acid was found to have no physical problems even when stored at room temperature for a long time.

말지방(horse fat)은 아시아에서 효능 있는 원료로 알려져 있어, 말지방에 첨가제 수준에서 다른 성분을 혼합한 거의 말지방 자체를 완제품으로 판매하는 경우가 상당수 있다. 이런 경우 말지방 원료의 물성이 중요한데, 국내에서 정제된 말지방의 경우 온도 안정성이 낮아 저온에 보관하지 않으면 분리가 발생하는 불편한 점이 발생하기도 한다. 일본산 말지방의 경우 부분적으로 수소 첨가하거나 액체상과 고체상을 분리시켜 고체상을 말지방으로 사용하고 있어 제주산 말지방보다 더 단단하고 안정된 성상을 나타내고 있다. 본 연구에서는 제주산 말지방을 부분적으로 수소 첨가하는 공정 없이도 안정한 물성으로 향상시키기 위한 물성향상 실험을 진행하였다. 실험은 다양한 오일겔화제(oil gelling agent)를 사용하였으며 여러 차례 실험을 진행한 결과 hydroxystearic acid를 첨가한 제주산 말지방에서 가장 물성이 향상된 것을 확인하였다. 또한 hydroxystearic acid를 첨가시켜 개선된 제주산 말지방과 100% 제주산 말지방, 100% 일본산 말지방에 대해 실온(25 ℃), 항온(40 ℃, 45 ℃)에서 안정성 평가를 진행하였고, 각 말지방에 대해 온도별 유동거동을 평가한 결과 hydroxystearic acid를 첨가시켜 개선한 제주산 말지방이 일본산 말지방과 유사한 유동거동을 나타냈다. 또한 현미경으로 결정입자를 관찰한 경우, hydroxystearic acid 첨가에 따라 침상결정의 크기를 작게 함으로써 좀 더 열안정성을 향상시키는 것으로 나타났다. 이에 hydroxystearic acid를 첨가시켜 개선된 제주산 말지방은 실온에서 장시간 보관하여도 물성에 이상이 없음을 확인할 수 있었다.

Keywords

References

  1. Y. H. Park, M. J. Cho, and H. J. Kim, Comparison of physicochemical characteristics of horse fat, lard, and beef-tallow, Korean J. Food Sci. Technol., 51(1), 1 (2019). https://doi.org/10.9721/KJFST.2019.51.1.1
  2. C. M. Park and I. K. Yeo, Development of citrus horse fat using on Immature citrus peel and citrus peel, Bull. Mar. Sci., 40, 37 (2016).
  3. Korea Patent 10-2016-0114113 (2016).
  4. H. J. Kim, Master's Thesis Dissertation, Konkuk Univ., Seoul, Korea (2015).
  5. Korea Patent 10-2008-0103893 (2008).
  6. Y. H. Park, M. J. Cho, and H. J. Kim, Effects of ${\alpha}$-, ${\gamma}$-, and ${\delta}$-tocopherol on the oxidative stability of horse fat, Korean J. Food Sci. Technol., 50(3), 267 (2018). https://doi.org/10.9721/KJFST.2018.50.3.267
  7. Korea Patent 10-2015-7035659 (2014).
  8. Korea Patent 10-2011-7005716 (2009).
  9. W. G. Cho, The utilization of oleogels for cosmetics, J. of Korean Oil Chemists Soc., 30(1), 16 (2013). https://doi.org/10.12925/jkocs.2013.30.1.016
  10. K. H. Choi, H. H. Son, and S. M. Lee, The effect of glossiness and lattice structure of wax matrixes on using n-paraffin and branched wax, J. Soc. Cosmet. Sci. Korea, 36(2), 99 (2010).
  11. P. Terech, D. Pasquier, V. Bordas, and C. Rossat, Rheological properties and structural correlations in molecular organogels, Langmuir, 16(10), 4485 (2000). https://doi.org/10.1021/la991545d
  12. S. Sahoo, N. Kumar, C. Bhattacharya, S. S. Sagiri, K. Jain, K. Pal, S. S. Ray, and B. Nayak, Organogels: properties and applications in drug delivery, Des. Monomers Polym., 14(2), 95 (2011). https://doi.org/10.1163/138577211X555721
  13. A. Vintiloiu and J. C. Leroux, Organogels and their use in drug delivery, J Control Release, 125(3), 179 (2008). https://doi.org/10.1016/j.jconrel.2007.09.014
  14. M. Burkhardt, S. Kinzel, and M. Gradzielski, Macroscopic properties and microstructure of HSA based organogels: sensitivity to polar additives, J. Colloid Interface Sci., 331(2), 514 (2009). https://doi.org/10.1016/j.jcis.2008.11.078
  15. T. Tamura and M. Ichikawa, Effect of lecithin on organogel formation of 12-hydroxystearic acid, J. Am. Oil Chem. Soc., 74(5), 491 (1997). https://doi.org/10.1007/s11746-997-0170-5
  16. J. L. Li, R. Y. Wang, X. Y. Liu, and H. H. Pan, Nanoengineering of a biocompatible organogel by thermal processing, J. Phys. Chem., 113(15), 5011 (2009). https://doi.org/10.1021/jp811215t
  17. H. Y. Kuk and K. W. Song, Rheological properties of antiphlamine-S$^{(R)}$ lotion, J. Korean Pharm. Sci., 39(3), 185 (2009).
  18. D. W. Hong, Master's Thesis Dissertation, Jeju National Univ., Jeju, Korea (2019).
  19. Y. B. Kim and S. J. Song, Principles and applications of thermal analysis instruments (DSC, DTA, TGA, TMA), Polym. Sci. Technol., 4(5), 387 (1993).
  20. Y. S. Kim and H. M. Jeong, Thermal analysis of polymeric materials, Polym. Sci. Technol., 22(4), 370 (2011).
  21. Y. C. Kim, J. S Park, S. H. Yang, H. L Park, and J. I. Yoh, Kinetic analysis of energetic materials using differential scanning calorimetry, J. of the Korean Society of Propulsion Engineers, 19(1), 33 (2015). https://doi.org/10.6108/KSPE.2015.19.1.033
  22. Y. T. Sohn and A. K. Lee, Compatibility study using differential scanning calorimetry, Journal of Korean pharmaceutical sciences, 29(2), 117. (1999).
  23. K. Nishinari, Rheological and DSC study of sol-gel transition in aqueous dispersions of industrially important polymers and colloids, Colloid Polym. Sci., 275(12), 1093 (1997). https://doi.org/10.1007/s003960050189
  24. M. A. Rogers and A. G. Marangoni, Non-isothermal nucleation and crystallization of 12-hydroxystearic acid in vegetable oils, Crystal Growth and Design, 8(12), 4596 (2008). https://doi.org/10.1021/cg8008927