DOI QR코드

DOI QR Code

흑효모를 이용한 참도박 발효 추출물의 항산화 효과와 티로시나제 및 콜라게나제 저해효과

Evaluation of Antioxidant, Tyrosinase and Collagenase Inhibitory of Grateloupia elliptica Extracts after Aureobasidium pullulans Fermentation

  • 부반빈 (영남대학교 생명응용과학대학 생명공학과) ;
  • 이경은 (영남대학교 생명응용과학대학 생명공학과) ;
  • 강상구 (영남대학교 생명응용과학대학 생명공학과)
  • Vu, Van Vinh (Department of Biotechnology, College of Life and applied Sciences, Yeungnam University) ;
  • Lee, Kyung Eun (Department of Biotechnology, College of Life and applied Sciences, Yeungnam University) ;
  • Kang, Sang Gu (Department of Biotechnology, College of Life and applied Sciences, Yeungnam University)
  • 투고 : 2019.11.27
  • 심사 : 2020.03.06
  • 발행 : 2020.03.30

초록

연구에서는 흑효모(Aureobasidium pullulans)를 이용한 참도박(Grateloupia elliptica) 발효 열수와 에탄올 추출물 및 발효하지 않은 참도박 열수와 에탄올 추출물과 항산화, 티로시나제와 콜라게나제 저해효과, 세포독성 및 증식실험을 진행하였다. 흑효모 발효 참도박 추출물과 참도박 추출물은 농도가 증가함에 따라 농도의존적으로 DPPH와 ABTS 라디칼 소거활성이 높아졌으며, 발효에 관계없이 에탄올 추출물이 열수 추출물보다 항산화 활성이 높게 나타났다. 또한 모든 시료 중 참도박 발효 에탄올 추출물의 항산화 활성이 가장 높게 나타났다. Tyrosinase 저해효과는 1,000 ㎍/mL 농도에서 참도박 발효 에탄올 추출물(GEFEE)이 9.8%로 가장 높은 결과를 나타냈으나, 모든 추출물에서 10%이하의 낮은 tyrosinase 저해효과를 나타냈다. Collagenase 저해 효과를 조사한 결과 발효와 관계없이 열수추출물에서는 collagenase 저해 효과가 미미한 것으로 나타났으나, 에탄올 추출물의 경우 농도 의존적으로 collagenase 저해효과를 나타냈다. 또한 참도박 발효에탄올 추출물의 경우 1,000 ㎍/mL에서 50.3%의 시료 중 가장 높은 저해 효과를 나타냈다. 인간세포(HaCaT, keratinocytes)를 이용하여 세포독성 및 증식실험을 진행하였다. 참도박 및 참도박 발효추출물의 세포독성 및 증식률은 무처리 대조군과 비교한 결과 시료의 모든 농도에서 90% 이상의 결과를 나타냈다. 모든 시료 중 참도박 발효 에탄올추출물이 가장 높은 항산화 활성 및 주름개선 효과를 나타냈다. 따라서 참도박 발효추출물은 우수한 항산화 효과와 주름개선 효능을 가진 화장품의 생리활성 소재로 개발될 수 있을 것으로 사료된다.

In this experiment, the Grateloupia elliptica (G. elliptica) was fermented using the fungus Aureobasidium pullulans (A. pullulans) and its extract was obtained from hot water and 70% ethanol solution. The extract was studied for their biological activities such as antioxidant effect, Collagenase and tyrosinase inhibition in comparison to the nonfermented exatract in same solvents. Antioxidative activity test using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) showed that ethanol extract had higher antioxidant activity than water extract. Among all of the samples, the antioxidant activity of G. elliptica fermented ethanol extracts (GEFEE) was highest. Tyrosinase inhibitory activity of GEFEE was highest with 9.8% at the 1,000 ㎍/mL concentration. No inhibition of collagenase from G. elliptica water extract (GEWE) and G. elliptica fermented water extract (GEFWE) was observed, but G. elliptica ethanol extracts (GEEE) and GEFEE showed increased collagenase inhibition activity with increasing concentrations of them. Collagenase inhibitory activity of GEFEE was highest with 50.3% at the 1,000 ㎍/mL concentration. MTS cell proliferation assay was conducted with the GEWE, GEEE, GEFWE, GEFEE and cell viability was over 90% at the 10 ㎍/mL ~ 1000 ㎍/mL concentrations for all of the samples, which suggested that the extracts were noncytotoxic. In conclusion, fermented extracts of G. elliptica could be developed to bioactive functional material for cosmetics with antioxidant and wrinkle improvement effects.

키워드

참고문헌

  1. K. Y. Kim and N. K. Lee, Herbal extracts research trend that have effects on melanin production and control, Kor. J. Aesthet. Cosmetol., 12(4), 453 (2014).
  2. J. Y. Kim, J. Y. Kim, C. H. Choi, J. H. Lim, M. J. Choo, S. H. Moon, and S. J. Chang, Development of pre-assessment indicator for skin aging and anti-aging effect of inner skin by the cream product containing Gynostemma pentaphyllum gypenoside fraction, J. Soc. Cosmet. Sci. Korea, 42(3), 303 (2016). https://doi.org/10.15230/SCSK.2016.42.3.303
  3. A. R. Ganesan, U. Tiwari, and G. Rajauria, Seaweed nutraceuticals and their therapeutic role in disease prevention, Food Sci. Hum. Wellness, 8(3), 252 (2019). https://doi.org/10.1016/j.fshw.2019.08.001
  4. J. Parada, J. R. Perez-Correa, and J. Perez-Jimenez, Design of low glycemic response foods using polyphenols from seaweed, J. Funct. Foods, 56, 33 (2019). https://doi.org/10.1016/j.jff.2019.03.004
  5. M. M. Monagail, E. Cummins, R. Bermejo, E. Daly, D. Costello, and L. Morrison, Quantification and feed to food transfer of total and inorganic arsenic from a commercial seaweed feed, Environ. Int, 118, 314 (2018). https://doi.org/10.1016/j.envint.2018.05.032
  6. A. N. Aryee, D. Agyei, and T. O. Akanbi, Recovery and utilization of seaweed pigments in food processing, Curr. Opin. Food Sci., 19, 113 (2018). https://doi.org/10.1016/j.cofs.2018.03.013
  7. N. M. Nurilmala, T. Hidayat, and F. Sudirdjo, Characteristics of seaweed as raw materials for cosmetics, Aquat. Procedia, 7, 177 (2016). https://doi.org/10.1016/j.aqpro.2016.07.024
  8. J. Fleurence and I. Levine, Seaweed in health and disease prevention, eds. J. Fleurence and I. Levine, 423, Elsevier Science Publishing Co Inc, San Diego, United States. (2016).
  9. Y. Qin, Bioactive seaweeds for food applications: Natural ingredients for healthy diets, ed. Y. Qin, 111, Elsevier Science Publishing Co Inc, San Diego, United States. (2018).
  10. H. Dominguez,, Functional ingredients from algae for foods and nutraceuticals, ed. H. Dominguez, 694, Elsevier's Science and Technology, Cambridge, United Kingdom. (2013).
  11. J. Y. Berthon, R. N. Kappes, M. Bey, J. P. Cadoret, I. Renimel, and E. Filaire, Marine algae as attractive source to skin care, Free Radic. Res., 51(6), 555 (2017). https://doi.org/10.1080/10715762.2017.1355550
  12. S. Joshi, R. Kumari, and V. N. Upasani, Applications of algae in cosmetics: An overview, Int. J. Innov. Res. Sci. Eng. Technol., 7(2), 1269 (2018).
  13. J. K. Lim, A review of the usability of fucoidan extracted from brown seaweed as a functional ingredient of cosmetics, Kor. J. Aesthet. Cosmetol., 12(4), 447 (2014).
  14. I. P. S. Fernando, K. N. Kim, D. Kim, and Y. J. Jeon, Algal polysaccharides: potential bioactive substances for cosmeceutical applications, Crit. Rev. Biotechnol., 39(1), 99 (2018).
  15. F. A. Gomez, N. Korbee, V. C. Arrojo, R. T. A. Diaz, and F. L. Figueroa, UV photoprotection, cytotoxicity and immunology capacity of red algae extracts, Molecules, 24(2), 341 (2019). https://doi.org/10.3390/molecules24020341
  16. Y. Ding, S. H. Kim, J. J. Lee, J. T. Hong, E. A. Kim, D. H. Kang, S. J. Heo, and S. H. Lee, Antimelanogenesis activity of Ecklonia cava extract cultured in tanks with magma seawater of jeju island, Algae, 34(2), 177 (2019). https://doi.org/10.4490/algae.2019.34.4.30
  17. N. Y. Bae, M. J. Kim, K. B. W. R. Kim, N. K. Ahn, Y. U. Choi, J. H. Park, S. H. Park, and D. H. Ahn, Anti-inflammatory effect of ethanol extract from Grateloupia elliptica holmes on lipopolysaccharideinduced inflammatory responses in RAW 264.7 cells and mice ears, J. Korean Soc. Food Sci. Nutr., 44(8), 1128 (2015). https://doi.org/10.3746/JKFN.2015.44.8.1128
  18. K. Y. Kim, K. A. Nam, H. Kurihara, and S. M. Kim, Potent ${\alpha}$-glucosidase inhibitors purified from the red alga Grateloupia elliptica, Phytochemistry, 69(16), 2820 (2008). https://doi.org/10.1016/j.phytochem.2008.09.007
  19. J. Kang, S. C. Kim, S. C. Han, H. J. Hong, Y. J. Jeon, B. Kim, Y. S. Koh, E. S. Yoo, and H. K. Kang, Hair-loss preventing effect of Grateloupia elliptica, Biomol. Ther., 20(1), 118 (2012). https://doi.org/10.4062/biomolther.2012.20.1.118
  20. M. L. Cho, G. M. Park, S. N. Kim, T. Amna, S. Lee, and W. S. Shin, Glioblastoma-specific anticancer activity of pheophorbide a from the edible red seaweed Grateloupia elliptica, J. Microbiol. Biotechnol., 24(3), 346 (2014). https://doi.org/10.4014/jmb.1308.08090
  21. J. S. Kim, M. Lee, M. Y. Song, S. W. Kwon, S. J. Kim, S. B. Hong, B. Y. Park, and B. S. Yun, Isolation and identification of Aureobasidium spp. from flowers of the jeolla-do province in Korea, Korean J. Mycol., 46(4), 415 (2018).
  22. Z. Chi, F. Wang, Z. Chi, L. Yue, G. Liu, and T. Zang, Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast, Appl. Microbiol. Biotechnol., 82(5), 793 (2009). https://doi.org/10.1007/s00253-009-1882-2
  23. C. Cheng, Y. Zhou, M. Lin, P. Wei, and S. T. Yang, Polymalic acid fermentation by Aureobasidium pullulans for malic acid production from soybean hull and soy molasses: Fermentation kinetics and economic analysis, Bioresour. Technol., 223, 166 (2017). https://doi.org/10.1016/j.biortech.2016.10.042
  24. C. An, S. J. Ma, F. Chang, and W. J. Xue, Efficient production of pullulan by Aureobasidium pullulans grown on mixtures of potato starch hydrolysate and sucrose, Braz. J. Microbiol., 48(1), 180 (2017). https://doi.org/10.1016/j.bjm.2016.11.001
  25. S. Suraiya, Y. B. Choi, H. D. Park, W. J. Jang, H. H. Lee, and I. S. Kong, Saccharina japonica fermented by Monascus spp. inhibit adipogenic differentiation and gene expression analyzed by real-time PCR (Q-PCR) in 3T3-L1 cell, J. Funct. Foods, 55, 371 (2019). https://doi.org/10.1016/j.jff.2019.02.043
  26. Korea Patent 10-1647049 (2016).
  27. Korea Patent 10-0893350 (2009).
  28. D. H. Park, S. T. Lee, D. Y. Jun, J. Y. Lee, M. H. Woo, K. Y. Kim, M. C. Seo, J. Y. Ko, K. S. Woo, T. W. Jung, D. Y. Kwak, M. H. Nam, and Y. H. Kim, Comparative evaluation of antioxidant activities of ethanol extracts and their solvent fractions obtained from selected miscellaneous cereal grain, Life Sci., 24(1), 26 (2014). https://doi.org/10.5352/JLS.2014.24.1.26
  29. J. K. Suk, J. Y. Lee, H. J. Kwon, and B. W. Kim, Anti-oxidative, anti-inflammatory, and anti-melanogenic activities of Endlicheria Anomala Extract, Korean J. Microbiol. Biotechnol., 41(4), 433 (2013). https://doi.org/10.4014/kjmb.1309.09005
  30. T. S. Thring, P. Hili, and D. P. Naughton, Anticollagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants, BMC Complement Altern Med., 9, 27 (2019). https://doi.org/10.1186/1472-6882-9-27
  31. T. L. Riss, R. A. Moravec, A. L. Niles, S. Duellman, H. A. Benink, T. J. Worzella, and L. Minor, Cell viability assays, Assay Guidance Manual (2013).
  32. C. C. Wei, C. W. Yu, P. L. Yen, H. Y. Lin, S. T. Chang, F. L. Hsu, and V. H. Liao, Antioxidant activity, delayed aging, and reduced amyloid-${\beta}$ toxicity of methanol extracts of tea seed pomace from Camellia tenuifolia, J. Agric. Food Chem., 62(44), 10701(2014). https://doi.org/10.1021/jf503192x
  33. A. Floegel, D. O. Kim, S. J. Chung, S. I. Koo, and O. K. Chun, Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods, J. Food Compos. Anal., 24(7), 1043 (2011). https://doi.org/10.1016/j.jfca.2011.01.008
  34. H. Z. Hill, W. Li, P. Xin, and D. L. Mitchell, Melanin: a two edged sword?, Pigment Cell Res., 10(3), 158 (1997). https://doi.org/10.1111/j.1600-0749.1997.tb00478.x
  35. J. H. Chung, S. Kang, J. Varani, J. Lin, G. J. Fisher, and J. J. Voorhees, Decreased extracellular-signalregulated kinase and increased stress-activated MAP kinase activities in aged human skin in vivo. J. Invest. Dermatol., 115(2), 117 (2000).