DOI QR코드

DOI QR Code

Synthesis and Properties of Self-photocuring Polyurethane Acrylate Oligomer for Color Pre-coated metal

선도장 컬러강판용 도료에 적용하기 위한 자가 광경화형 폴리우레탄 아크릴레이트 올리고머 합성 및 물성

  • Park, So-Young (Korea Institute of Footwear and Leather Technology (KIFLT)) ;
  • Cheon, Jungmi (Korea Institute of Footwear and Leather Technology (KIFLT)) ;
  • Jeong, Boo Young (Korea Institute of Footwear and Leather Technology (KIFLT)) ;
  • Lee, Do Hyeok (Korea Institute of Footwear and Leather Technology (KIFLT)) ;
  • Chun, Jae Hwan (Korea Institute of Footwear and Leather Technology (KIFLT))
  • 박소영 (한국신발피혁연구원 고분자표면연구실) ;
  • 천정미 (한국신발피혁연구원 고분자표면연구실) ;
  • 정부영 (한국신발피혁연구원 고분자표면연구실) ;
  • 이도혁 (한국신발피혁연구원 고분자표면연구실) ;
  • 천제환 (한국신발피혁연구원 고분자표면연구실)
  • Received : 2019.11.11
  • Accepted : 2019.12.26
  • Published : 2020.03.31

Abstract

In this study, we synthesized a self-photocuring intermediate(SPI) by Michael addition reaction and synthesized polyurethane acrylate oligomer. Analysis and physical properties of the synthesized SPI and polyurethane acrylate oligomer were confirmed by FT-IR, NMR and UTM. As the content of the SPI increased, the tensile strength increased and the elongation decreased. In addition, since the film was hydrophobic, the surface energy tended to decrease. When the content of the SPI was 40 wt%, adhesion, processability, and pencil hardness were excellent, and solvent resistance was excellent overall.

본 연구에서는 Michael addition 반응을 통해 자가 광경화형 중간체를 합성하여 이를 적용한 폴리우레탄 아크릴레이트 올리고머를 합성하였다. 합성된 중간체와 폴리우레탄 아크릴레이트 올리고 머의 분석 및 물성은 FT-IR, NMR 및 UTM을 통해 확인하였다. 중간체의 함량이 증가할수록 인장강도는 증가하고 신율은 감소하였으며 필름이 소수성을 띄어 표면에너지가 감소하는 경향을 보였다. 중간체의 함량이 40 wt%일 때 부착성, 가공성, 연필경도가 우수했으며, 내용제성은 모두 우수한 결과를 나타내었다.

Keywords

References

  1. W. C. Choi, W. K. Lee, C. S. Ha, Mol. Cryst. Liq. Cryst. Sci. Technol., 660, 104 (2018). https://doi.org/10.1080/15421406.2018.1456087
  2. B. A. Ann, J. A. Jung, J. M. Lee, and H. M. Jeong, Polymer(korea), 41, 790 (2017). https://doi.org/10.7317/pk.2017.41.5.790
  3. A. R. Han, J. W. Hong, H. K. Kim, J. Adhes. Interface, 15, 1 (2014). https://doi.org/10.17702/jai.2014.15.1.001
  4. X. Zhang, J. Yang, Z. Zeng, Y. Wu, L. Huang, Y. Chen, H. Wang, Polym. Eng. Sci., 47, 1082 (2007). https://doi.org/10.1002/pen.20787
  5. J. Y. Choi, D. J. Lee and H. D. Kim, Journal of the Korean Society of Dyers and Finishers, 11, 1 (1999).
  6. N. Moszner & V. Rheinherger, Macromol. Rapid Commun., 16, 135 (1995). https://doi.org/10.1002/marc.1995.030160207
  7. W. Knolle, T. Scherzer, S. Naumov, R. Mehnert, Radiat. Phys. Chem., 67, 341 (2003). https://doi.org/10.1016/S0969-806X(03)00064-1
  8. T. T. Hsleh, K. H. Hsieh, G. P. Simon, C. Tlu and H. P. Hsu, J. Polym. Res., 5, 153 (1998). https://doi.org/10.1007/s10965-006-0051-x
  9. H. J. Park, C. D. Han and S. T. Oh, J. Adhes. Interface, 14, 167 (2013). https://doi.org/10.17702/jai.2013.14.4.167
  10. S. R. Cho and H. G. Cho, J. Korean Chem. soc., 57, 432 (2013). https://doi.org/10.5012/jkcs.2013.57.4.432
  11. A. Zdziennicka, J. Krawczyk and B. Janczuk, J. Colloid Interfaces Sci., 2, 21 (2018). https://doi.org/10.3390/colloids2020021
  12. C. J. Lee, S. K. Lee and B. M. Kim, 대한기계학회 논문집, 32, 354 (2008).
  13. J. C. Lim, B. S. Kim, S. Y. Choi, Polym. Sci. Technol., 6, 213 (1995).
  14. G. Gonzalez, X. F. Francos, A. Serra, M. Sangermano and X. Ramis, Royal Society of Chemistry, 6, 6987 (2015).
  15. M. D. Person, P. W. Kash and L. J. Butler. J. Phys. Chem., 96, 2021 (1992). https://doi.org/10.1021/j100184a001