DOI QR코드

DOI QR Code

Importance of Microglial Cytoskeleton and the Actin-interacting Proteins in Alzheimer's Disease

  • Choi, Go-Eun (Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan)
  • Received : 2020.02.12
  • Accepted : 2020.03.21
  • Published : 2020.03.31

Abstract

Alzheimer's disease (AD) is the most common neurodegenerative disorder and is expected to become more and more widespread as life expectancy increases. New therapeutic target, as well as the identification of mechanisms responsible for pathology, is urgently needed. Recently, microglial actin cytoskeleton has been proposed as a beneficial role in axon regeneration of brain injury. This review highlights in understanding of the characteristics of microglial actin cytoskeleton and discuss the role of specific actin-interacting proteins and receptors in AD. The precise mechanisms and functional aspects of motility by microglia require further study, and the regulation of microglial actin cytoskeleton might be a potential therapeutic strategy for neurological diseases.

Keywords

References

  1. Ajit D, Woods LT, Camden JM, Thebeau CN, El-Sayed FG, Greeson GW, Erb L, Petris MJ, Miller DC, Sun GY, Weisman GA. Loss of P2Y Nucleotide Receptors Enhances Early Pathology in the TgCRND8 Mouse Model of Alzheimer's Disease. Mol Neurobiol. 2013. 49: 1031-1042. https://doi.org/10.1007/s12035-013-8577-5
  2. Akama KT, Eldik LJV. b-Amyloid Stimulation of Inducible Nitricoxide Synthase in Astrocytes Is Interleukin-1b- and Tumor Necrosis Factor-a (TNFa)-dependent, and Involves a TNFa Receptor-associated Factor- and NFkB-inducing Kinasedependent Signaling Mechanism. J Biol Chem. 2000. 275: 7918-7924. https://doi.org/10.1074/jbc.275.11.7918
  3. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WST, Hampel H, Hull M, Landreth G, Lue LF, Mrak R, Mackenzie IR, McGeer PL, O'Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Muiswinkel FLV, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T. Inflammation and Alzheimer's disease. Neurobiol Aging. 2000. 21: 383-421. https://doi.org/10.1016/S0197-4580(00)00124-X
  4. Alhadidi Q, Shah ZA. Cofilin mediates lps-induced microglial cell activation and associated neurotoxicity through activation of nf-kb and jak-stat pathway. Mol Neurobiol. 2018. 55: 1676-1691. https://doi.org/10.1007/s12035-017-0432-7
  5. Bartles JR. Parallel actin bundles and their multiple actin-bundling proteins. Curr Opin Cell Biol. 2000. 12: 72-78. https://doi.org/10.1016/S0955-0674(99)00059-9
  6. Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J. Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev. 2014. 94: 235-263. https://doi.org/10.1152/physrev.00018.2013
  7. Bemiller SM, McCray TJ, Allan K, Formica SV, Xu G, Wilson G, Kokiko-Cochran ON, Crish SD, Lasagna-Reeves CA, Ransohoff RM, Landreth GE, Lamb BT. TREM2 deficiency exacerbates tau pathology through dysregulated kinase signaling in a mouse model of tauopathy. Mol Neurodegener. 2017. 74.
  8. Combs CK, Johnson DE, Karlo JC, Cannady SB, Landreth GE. Inflammatory mechanisms in Alzheimer's disease: Inhibition of b-Amyloid-Stimulated proinflammatory responses and neurotoxicity by PPARg agonists. J Neurosci. 2000. 20: 558-567. https://doi.org/10.1523/jneurosci.20-02-00558.2000
  9. Cribbs DH, Berchtold NC, Perreau V, Coleman PD, Rogers J, Tenner AJ, Cotman CW. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J Neuroinflammation. 2012. 9: 179.
  10. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RI, Ostankovich M, Sharma P, Lysiak JJ, Harden TK, Leitinger N, Ravichandran KS. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature. 2009. 461: 282-286. https://doi.org/10.1038/nature08296
  11. Franco-Bocanegra DK, McAuley C, Nicoll JAR, Boche D. Molecular Mechanisms of Microglial Motility: Changes in Ageing and Alzheimer's Disease. Cells. 2019. 8: 693. https://doi.org/10.3390/cells8070693
  12. Ferreira ST, Clarke JR, Bomfim TR, De Felice FG. Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer's disease. Alzheimers Dement. 2014. 10: S76-83. https://doi.org/10.1016/j.jalz.2013.12.010
  13. Fu R, Shen Q, Xu P, Luo JJ, Tang Y. Phagocytosis of Microglia in the Central Nervous System Diseases. Mol Neurobiol. 2014. 49: 1422-1434. https://doi.org/10.1007/s12035-013-8620-6
  14. Fulga TA, Elson-Schwab I, Khurana V, Steinhilb ML, Spires TL, Hyman BT, Feany MB. Abnormal bundling and accumulation of f-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol. 2007. 9: 139. https://doi.org/10.1038/ncb1528
  15. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010. 330: 841-845. https://doi.org/10.1126/science.1194637
  16. Gomez-Nicola D, Boche D. Post-mortem analysis of neuroinflammatory changes in human Alzheimer's disease. Alzheimers Res Ther. 2015. 7.
  17. Grammas P. Neurovascular dysfunction, inflammation and endothelial activation: Implications for the pathogenesis of Alzheimer's disease. J Neuroinflammation. 2011. 8: 26. https://doi.org/10.1186/1742-2094-8-26
  18. Gupton SL, Gertler FB. Filopodia: The fingers that do the walking. Sci STKE. 2007. 400: re5.
  19. Hind LE, Vincent WJ, Huttenlocher A. Leading from the back: The role of the uropod in neutrophil polarization and migration. Dev Cell. 2016. 38: 161-169. https://doi.org/10.1016/j.devcel.2016.06.031
  20. Hinman JD, Duce JA, Siman RA, Hollander W, Abraham CR. Activation of calpain-1 in myelin and microglia in the white matter of the aged rhesus monkey. J Neurochem. 2004. 89: 430-441. https://doi.org/10.1046/j.1471-4159.2004.02348.x
  21. Hopperton KE, Mohammad D, Trepanier MO, Giuliano V, Bazinet RP. Markers of microglia in post-mortem brain samples from patients with Alzheimer's disease: a systematic review. Mol Psychiatry. 2018. 23: 177-198. https://doi.org/10.1038/mp.2017.246
  22. Janssen B, Vugts DJ, Funke U, Molenaar GT, Kruijer PS, van Berckel BNM, Lammertsma AA, Windhorst AD. Imaging of neuroinflammation in Alzheimer's disease, multiple sclerosis and stroke: Recent developments in positron emission tomography. Biochim Biophys Acta. 2016. 1862: 425-441. https://doi.org/10.1016/j.bbadis.2015.11.011
  23. Jay TR, Miller CM, Cheng PJ, Graham LC, Bemiller S, Broihier ML, Xu G, Margevicius D, Karlo JC, Sousa GL, Cotleur AC, Butovsky O, Bekris L, Staugaitis SM, Leverenz JB, Pimplikar SW, Landreth GE, Howell GR, Ransohoff RM, Lamb BT. TREM2 deficiency eliminates TREM21 inflammatory macrophages and ameliorates pathology in Alzheimer's disease mouse models. J Exp Med. 2015. 212: 287-295. https://doi.org/10.1084/jem.20142322
  24. Klesney-Tait J, Turnbull IR, Colonna M. The TREM receptor family and signal integration. Nat Immunol. 2006. 7: 1266-1273. https://doi.org/10.1038/ni1411
  25. Knezevic D, Mizrahi R. Molecular imaging of neuroinflammation in Alzheimer's disease and mild cognitive impairment. Prog Neuropsychopharmacol Biol Psychiatry. 2018. 80: 123-131. https://doi.org/10.1016/j.pnpbp.2017.05.007
  26. Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K, Shinozaki Y, Ohsawa K, Tsuda M, Joshi BV, Jacobson KA, Kohsaka S, Inoue K. UDP acting at $P2Y_6$ receptors is a mediator of microglial phagocytosis. Nature. 2007. 446: 1091-1095. https://doi.org/10.1038/nature05704
  27. Lai FP, Szczodrak M, Block J, Faix J, Breitsprecher D, Mannherz HG, Stradal TE, Dunn GA, Small JV, Rottner K. Arp2/3 complex interactions and actin network urnover in lamellipodia. EMBO J. 2008. 27: 982-992. https://doi.org/10.1038/emboj.2008.34
  28. Lai MK, Tan MG, Kirvell S, Hobbs C, Lee J, Esiri MM, Chen CP, Francis PT. Selective loss of P2Y2 nucleotide receptor immunoreactivity is associated with Alzheimer's disease neuropathology. J Neural Transm. 2008. 115: 1165-1172. https://doi.org/10.1007/s00702-008-0067-y
  29. Leyns CEG, Ulrich JD, Finn MB, Stewart FR, Koscal LJ, Remolina Serrano J, Robinson GO, Anderson E, Colonna M, Holtzman DM. TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proc Natl Acad Sci. 2017. 14: 1524-1529.
  30. Lucin KM, Wyss-Coray T. Immune activation in brain aging and neurodegeneration: too much or too little? Neuron. 2009. 64: 110-122. https://doi.org/10.1016/j.neuron.2009.08.039
  31. Meraz-Rios MA, Toral-Rios D, Franco-Bocanegra D, Villeda-Hernandez J, Campos-Pena V. Inflammatory process in Alzheimer's Disease. Front Integr Neurosci. 2013. 7.
  32. Mrak RE, Griffin WST. Common inflammatory mechanisms in Lewy Body disease and Alzheimer disease. J Neuropathol Exp Neurol. 2007. 66: 683-686. https://doi.org/10.1097/nen.0b013e31812503e1
  33. Mittelbronn M, Dietz K, Schluesener HJ, Meyermann R. Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathol. 2001. 101: 249-255. https://doi.org/10.1007/s004010000284
  34. Napoli I, Neumann H. Protective effects of microglia in multiple sclerosis. Exp. Neurol. 2010. 225: 24-28. https://doi.org/10.1016/j.expneurol.2009.04.024
  35. Nimmerjahn A, Kirchho F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005. 308: 1314-1318. https://doi.org/10.1126/science.1110647
  36. Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T. Control of actin reorganization by slingshot, a family of phosphatases that dephosphorylate adf/cofilin. Cell. 2002. 108: 233-246. https://doi.org/10.1016/S0092-8674(01)00638-9
  37. Ohsawa K, Imai Y, Sasaki Y, Kohsaka S. Microglia/macrophagespecific protein iba1 binds to fimbrin and enhances its actinbundling activity. J Neurochem. 2004. 88: 844-856. https://doi.org/10.1046/j.1471-4159.2003.02213.x
  38. Ohsawa K, Imai Y, Kanazawa H, Sasaki Y, Kohsaka S. Involvement of iba1 in membrane ruffling and phagocytosis of macrophages/microglia. J Cell Sci. 2000. 113: 3073. https://doi.org/10.1242/jcs.113.17.3073
  39. Piccio L, Buonsanti C, Mariani M, Cella M, Gilfillan S, Cross AH, Colonna M, Panina-Bordignon P. Blockade of TREM-2 exacerbates experimental autoimmune encephalomyelitis. Eur J Immunol. 2007. 37: 1290-1301. https://doi.org/10.1002/eji.200636837
  40. Rubio-Perez JM, Morillas-Ruiz JM. A Review: Inflammatory process in Alzheimer's disease, role of cytokines. Scientific World Journal. 2012: 756357.
  41. Sasaki Y, Ohsawa K, Kanazawa H, Kohsaka S, Imai Y. Iba1 is an actin-cross-linking protein in macrophages/microglia. Biochem Biophys Res Commun. 2001. 286: 292-297. https://doi.org/10.1006/bbrc.2001.5388
  42. Samstag Y, John I, Wabnitz GH. Cofilin: A redox sensitive mediator of actin dynamics during t-cell activation and migration. Immunol Rev. 2013. 256: 30-47. https://doi.org/10.1111/imr.12115
  43. Satoh J, Tabunoki H, Ishida T, Yagishita S, Jinnai K, Futamura N, Kobayashi M, Toyoshima I, Yoshioka T, Enomoto K, Arai N, Saito Y, Arima K. Phosphorylated Syk expression is enhanced in Nasu-Hakola disease brains. Neuropathology. 2012. 32: 149-157. https://doi.org/10.1111/j.1440-1789.2011.01256.x
  44. Smith ME. Phagocytosis of myelin in demyelinative disease: a review. Neurochem Res. 1999. 24: 261-268. https://doi.org/10.1023/A:1022566121967
  45. Sudduth TL, Schmitt FA, Nelson PT, Wilcock DM. Neuroinflammatory phenotype in early Alzheimer's disease. Neurobiol Aging. 2013. 34: 1051-1059. https://doi.org/10.1016/j.neurobiolaging.2012.09.012
  46. Takahashi K, Rochford CD, Neumann H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 2005. 201: 647-657. https://doi.org/10.1084/jem.20041611
  47. Tuppo EE, Arias HR. The role of inflammation in Alzheimer's disease. Int J Biochem Cell Biol. 2005. 37: 289-305. https://doi.org/10.1016/j.biocel.2004.07.009
  48. Uesugi A, Kataoka A, Tozaki-Saitoh H, Koga Y, Tsuda M, Robaye B, Boeynaems JM, Inoue K. Involvement of protein kinase D in uridine diphosphate-induced microglial macropinocytosis and phagocytosis. Glia. 2012. 60: 1094-1105. https://doi.org/10.1002/glia.22337
  49. Ulrich JD, Finn MB, Wang Y, Shen A, Mahan TE, Jiang H, Stewart FR, Piccio FR, Colonna M, Holtzman DM. Altered microglial response to A beta plaques in APPPS1-21 mice heterozygous for TREM2. Mol Neurodegener. 2014. 20.
  50. Veerhuis R, Nielsen HM, Tenner AJ. Complement in the brain. Mol Immunol. 2011. 48: 1592-1603. https://doi.org/10.1016/j.molimm.2011.04.003
  51. Vinzenz M, Nemethova M, Schur F, Mueller J, Narita A, Urban E, Winkler C, Schmeiser C, Koestler SA, Rottner K, Resch GP, Maeda Y, Small JV. Actin branching in the initiation and maintenance of lamellipodia. J Cell Sci. 2012. 125: 2775 https://doi.org/10.1242/jcs.107623