DOI QR코드

DOI QR Code

Effect of Casting Speed on Microstructure and Mechanical Properties of Al-Mg-Si/Al Hybrid Material by Duo-Casting

  • Park, Sung Jin (Dept. of Materials Science and Engineering, Tokyo Institute of Technology) ;
  • Suh, Jun-Young (Dept. of Materials Engineering, Korea Aerospace University) ;
  • Lee, Hee-Kwon (Dept. of Metallurgy and Materials Engineering, Changwon National University) ;
  • Chang, Si Young (Dept. of Materials Engineering, Korea Aerospace University)
  • Received : 2020.02.03
  • Accepted : 2020.03.12
  • Published : 2020.03.27

초록

Two different casting speeds of 60 and 80mm/min are adopted to determine the effect of casting speed on the microstructure and mechanical properties of Al-Mg-Si/Al hybrid material prepared by duo-casting. The obtained hybrid material has a uniform and straight macro-interface between the pure Al side and the Al-Mg-Si alloy side at both casting speeds. When the casting speed is increased to 80mm/min, the size of primary α phases in Al-Mg-Si alloy decreases, without change of shape. Although the Al-Mg-Si alloy produced at higher casting speed of 80mm/min shows much higher ultimate tensile strength (UTS) and 0.2 % proof stress and lower elongation, along with higher bending strength compared to the case of the 60mm/min in casting speed, the tensile properties and bending strength of the hybrid material, which are similar to those of pure Al, are the same regardless of the increase of casting speed. Despite the different casting speeds, deformation and fracturing in hybrid materials are observed only on the pure Al side. This indicates that the macro-interface is well-bonded, allowing it to endure tensile and bending deformation in all hybrid materials.

키워드

참고문헌

  1. S. Y. Chang, S. J. Cho, S. K. Hong and D. H. Shin, J. Alloys Compd., 316, 275 (2001). https://doi.org/10.1016/S0925-8388(00)01457-2
  2. S. Y. Chang, Y. K. Kim, S. K. Hong and D. H. Shin, Mater. Trans., 42, 1035 (2001). https://doi.org/10.2320/matertrans.42.1035
  3. S. Y. Chang, H. G. Cho and Y. D. Kim, J. Korean Powder Metall. Inst., 14, 1 (2007). https://doi.org/10.4150/KPMI.2007.14.1.001
  4. S. H. Lee and G. J. Lee, Korean J. Mater. Res., 21, 655 (2011) (in Korean). https://doi.org/10.3740/MRSK.2011.21.12.655
  5. H. D. Manesh and A. K. Taheri, Mech. Mater., 37, 531 (2005). https://doi.org/10.1016/j.mechmat.2004.04.004
  6. O. Yilmaz and H. Celik, J. Mater. Process. Technol., 141, 67 (2003). https://doi.org/10.1016/S0924-0136(03)00029-3
  7. R. Kacar and M. Acarer, J. Mater. Process. Technol., 152, 91 (2004). https://doi.org/10.1016/j.jmatprotec.2004.03.012
  8. P. Kazanowski, M. E. Epler and W. Z. Misiolek, Mater. Sci. Eng., 369, 170 (2004). https://doi.org/10.1016/j.msea.2003.11.002
  9. F. Dingfa, N. Honglong and C. Zenhua, Ordnance Mater. Sci. Eng., 24, 65 (2001).
  10. S. Jianbo, L. Jun, Y. Zhiming, C. Zhiquiang and L. Tingju, in Proceedings of the 6th International Conference on Electromagnetic Processing of Materials, p595 Dresden, Germany, October (2009).
  11. J. M. Han, C. H. Kim, J. P. Park and S.Y. Chang, J. Korea Foundry Soc., 32, 269 (2012). https://doi.org/10.7777/jkfs.2012.32.6.269
  12. S. J. Park, T. Li, C. H. Kim, J. P. Park and S.Y. Chang, Korean J. Mater. Res., 22, 97 (2012). https://doi.org/10.3740/MRSK.2012.22.2.97
  13. J. Y. Suh, S. J. Park, D. Y. Kwon and S.Y. Chang, Korean J. Mater. Res., 28, 499 (2018). https://doi.org/10.3740/MRSK.2018.28.9.499
  14. J. H. Peng, X. L. Tang, J. T. He and D. Y. Xu, Trans. Nonferrous Met. Soc. China, 21, 1950 (2011). https://doi.org/10.1016/S1003-6326(11)60955-2
  15. J. S. Suh, S. J. Park, H. K. Lee and S. Y. Chang, Korean J. Mater. Res., 30, 51 (2020). https://doi.org/10.3740/MRSK.2020.30.2.51