DOI QR코드

DOI QR Code

Analyzing off-line Noah land surface model spin-up behavior for initialization of global numerical weather prediction model

전지구수치예측모델의 토양수분 초기화를 위한 오프라인 Noah 지면모델 스핀업 특성분석

  • Jun, Sanghee (Numerical Modeling Center, Korea Meteorological Administration) ;
  • Park, Jeong-Hyun (Numerical Modeling Center, Korea Meteorological Administration) ;
  • Boo, Kyung-On (Numerical Modeling Center, Korea Meteorological Administration) ;
  • Kang, Hyun-Suk (Numerical Modeling Center, Korea Meteorological Administration)
  • Received : 2020.01.29
  • Accepted : 2020.03.06
  • Published : 2020.03.31

Abstract

In order to produce accurate initial condition of soil moisture for global Numerical Weather Prediction (NWP), spin-up experiment is carried out using Noah Land Surface Model (LSM). The model is run repeatedly through 10 years, under the atmospheric forcing condition of 2008-2017 until climatological land surface state is achieved. Spin-up time for the equilibrium condition of soil moisture exhibited large variability across Koppen-Geiger climate classification zone and soil layer. Top soil layer took the longgest time to equilibrate in polar region. From the second layer to the fourth layer, arid region equilibrated slower (7 years) than other regions. This result means that LSM reached to equilibrium condition within 10 year loop. Also, spin-up time indicated inverse correlation with near surface temperature and precipitation amount. Initialized from the equilibrium state, LSM was spun up to obtain land surface state in 2018. After 6 months from restarted run, LSM simulates soil moisture, skin temperature and evaportranspiration being similar land surface state in 2018. Based on the results, proposed LSM spin-up system could be used to produce proper initial soil moisture condition despite updates of physics or ancillaries for LSM coupled with NWP.

본 연구에서는 전지구수치예보모델의 예측성능에 주요한 영향을 주는 요소 중 하나인 토양수분 초기장을 적절히 생산하기 위해, 오프라인 Noah 지면모델을 구축하여 스핀업실험을 수행하고 그 변동특성을 살펴보았다. 스핀업실험은 지면기후장 생성과 목표연도에 대한 현실화의 2단계로 구성되었다. 첫 번째 단계의 지면기후장 생성은 2008~2017년 기간에 대해 평균한 대기강제력으로 10년 동안 지면모델을 반복적으로 수행하는 방식으로 이루어졌으며, 토양수분 모의가 평형상태에 도달하는데 소요되는 시간은 토양깊이와 코펜 정의에 기반한 기후구 특성에 따라 차이가 컸다. 토양 첫 번째 층은 극지역에서 가장 길었고, 두 번째 층 부터 네 번째 층까지는 건조지역에서 평형상태에 도달하는 시간이 가장 늦어 최대 7년 내외의 시간이 소요되었다. 결과적으로 10년의 spin-up을 거치면 지면모델이 평형상태에 도달함을 알 수 있다. 이 소요시간은 지상기온과 강수량과 음의 상관관계를 보였다. 두 번째 단계에서는 2018년을 목표연도로 설정하고 지면기후장을 이용하여 추가 적분을 수행하고, 그 결과 6개월 이내에 지면모델에서 모의된 토양수분, 지표기온, 증발산량은 2018년 지면상태에 도달하는 것을 확인하였다. 이에 구축된 오프라인 Noah 지면모델 스핀업 시스템은 안정적으로 전구수치예보모델의 토양수분 초기장을 생산함으로써 전지구수치모델에 결합된 지면모델의 물리과정과 기초자료가 변하더라도 유연하게 대응할 수 있는 가능성을 확인하였다.

Keywords

References

  1. Beaudoing, H., and Rodell, M. (2016). GLDAS Noah land surface model L4 3 hourly 0.25 x 0.25 degree V2.1. Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, M.D., U.S.
  2. Best, M.J., Pryor, M., Clark, D.B., Rooney, G.G., Essery, R.L.H., Menard, C.B., Edwards, J.M., Hendry, M.A., Porson, A., Gedney, N., Mercado, L.M., Sitch, S., Blyth, E., Boucher, O., Cox, P.M., Grimmond, C.S.B., and Harding, R.J. (2011). "The Joint UK Land Environment Simulator (JULES), model description-Part 1 : Energy and water fluxes." Geoscientific Model Development, Vol. 4, pp. 677-699. https://doi.org/10.5194/gmd-4-677-2011
  3. Bett, F.C., Mitchell, K.E., and Janjic, Z.I. (1997). "Assessment of land surface and boundary layer models in two operational versions of the NCEP Eta model using FIFE data." Monthly Weather Review, Vol. 125, No. 11, pp. 2896-2916. https://doi.org/10.1175/1520-0493(1997)125<2896:AOTLSA>2.0.CO;2
  4. Chang, S., Hahn, D., Yang, C.H., Norquist, D., and Ek, M. (1999). "Validation study of the CAPS model land surface scheme using the 1987 Cabauw/PILPS dataset." Journal of Applied Meteorology, Vol. 38, No. 4, pp. 405-422. https://doi.org/10.1175/1520-0450(1999)038<0405:VSOTCM>2.0.CO;2
  5. Chen, F., Janjić, Z., and Mitchell, K. (1997). "Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model." Boundary-Layer Meteorology, Vol. 85, No. 3, pp. 391-421. https://doi.org/10.1023/A:1000531001463
  6. Chen, F., Mitchell, K., Schaake, J., Xue, Y., Pan, H., Koren, V., Duan,Y., Ek, M., and Betts, A. (1996). "Modeling of landsurface evaporation by four schemes and comparison with FIFE observations." Journal of geophysical research, Vol. 101, No. D3, pp. 7251-7268. https://doi.org/10.1029/95JD02165
  7. Cosgrove, B.A., Lohmann, D., Mitchell, K.E., Houser, P.R., Wood, E.F., Schaake, J.C., Robock, A., Sheffield, J., Duan, Q., Luo, L., Higgins, R.W., Pinker, R.T., and Tarpley J.D. (2003). "Land surface model spin-up behavior in the North American Land Data Assimilation System (NLDAS)." Journal of Geophysical Research. Vol. 108, No. D22, pp. 8845.
  8. Dharssi, I., Bovis, K.J., Macpherson, B., and Jones, C.P. (2011). "Operational assimilation of ASCAT surface soil wetness at the Met Office." Hydrology and Earth System Sciences, Vol. 15, No. 4, pp. 2729-2746. https://doi.org/10.5194/hess-15-2729-2011
  9. Dirmeyer, P.A. (2011). "The terrestrial segment of soil moistureclimate coupling." Geophysical Research Letters, Vol. 38, No. 16, p. L16702. https://doi.org/10.1029/2011GL048268
  10. Fischer, E.M., Seneviratne, S.I., Luthi, D., and Schar, C. (2007). "Contribution of land-atmosphere coupling to recent European summer heat waves." Geophysical Research Letters, Vol. 34, No. 6, p. L06707. https://doi.org/10.1029/2006GL029068
  11. Gutman, G., and Ignatov, A. (1998). "The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models." International Journal of remote sensing, Vol. 19, No. 8, pp. 1533-1543. https://doi.org/10.1080/014311698215333
  12. Hansen, M.C., Defries, R.S., Townshend, J.R.G., and Sohlberg, R. (2000). "Global land cover classification at 1km spatial resolution using a classification tree approach." International Journal of Remote sensing, Vol. 21, No. 6-7, pp. 1331-1364. https://doi.org/10.1080/014311600210209
  13. Kalnay, E., and Kanamitsu, M. (1988). "Time schemes for strongly nonlinear damping equations." Monthly Weather Review, Vol. 116, No. 10, pp. 1945-1958. https://doi.org/10.1175/1520-0493(1988)116<1945:TSFSND>2.0.CO;2
  14. Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G., and Van Brussel, H. (1999). "Reconfigurable manufacturing systems." CIRP annals, Vol. 48, No. 2, pp. 527-540. https://doi.org/10.1016/S0007-8506(07)63232-6
  15. Koster, R.D., Suarez, M.J., Ducharne, A., Stieglitz, M., and Kumar, P. (2000). "A catchment-based approach to modelling land surface processes in a general circulation model: 1. Model structure." Journal of geophysical research, Vol. 105, No. D20, pp. 24809-24822. https://doi.org/10.1029/2000JD900327
  16. Koster, R., and Suarez, M. (1996). "Energy and Water Balance Calculations in the Mosaic LSM." National Aeronautics and Space Administration (NASA) Technical Memorandum 104606, NASA/Goddard Space Flight Center, Greenbelt, M.D., U.S., Vol. 9, pp. 1-38.
  17. Kotter, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F. (2006). "World map of the Köppen-Geiger climate classification updated." Meteorologische Zeitschrift, Vol. 15, No. 3, pp. 259-263. https://doi.org/10.1127/0941-2948/2006/0130
  18. Kumar, S.V., Peters-Lidard, C.D., Tian, Y., Houser, P.R., Geiger, J., Olden, S., Lighty, L., Eastman, J.L., Doty, B., Dirmeyer, P., Adamsc, J., Mitchell, K., Woode, E.F., and Sheffield, J. (2006). "Land information system: An interoperable framework for high resolution land surface modeling." Environmental Modelling and Software, Vol. 21, No. 10, pp. 1402-1415. https://doi.org/10.1016/j.envsoft.2005.07.004
  19. Kumar, S.V., Reichle, R.H., Harrison, K.W., Peters-Lidard, C.D., Yatheendradas, S., and Santanello, J.A. (2012). "A comparison of methods for a priori bias correction in soil moisture data assimilation." Water Resources Research, Vol. 48, No. 3, p. W03515.
  20. Lim, Y.J., Hong, J., and Lee, T.Y. (2012). "Spin-up behavior of soil moisture content over East Asia in a land surface model." Meteorology and Atmospheric Physics, Vol. 118, No. 3-4, pp. 151-161. https://doi.org/10.1007/s00703-012-0212-x
  21. Livneh, B., Xia, Y., Mitchell, K.E., Ek, M.B., and Lettenmaier, D.P. (2010). "Noah LSM snow model diagnostics and enhancements." Journal of Hydrometeorology, Vol. 11, No. 3, pp. 721-738. https://doi.org/10.1175/2009JHM1174.1
  22. Mahrt, L., and Ek, M. (1984). "The influence of atmospheric stability on potential evaporation." Journal of Climate and Applied Meteorology, Vol. 23, No. 2, pp. 222-234. https://doi.org/10.1175/1520-0450(1984)023<0222:TIOASO>2.0.CO;2
  23. Mahrt, L., and Pan, H. (1984). "A two-layer model of soil hydrology." Boundary-Layer Meteorology, Vol. 29, No. 1, pp. 1-20. https://doi.org/10.1007/BF00119116
  24. Mitchell, K. (2005). The community Noah Land-surface model (LSM), User' guide, recovered from ftp://ftp.emc.ncep.noaa.gov/mmb/gcp/ldas/noahlsm/ver_2.7.1. National Centers for Environmental Prediction/Environmental Modelling Center.
  25. Niu, G.-Y., Yang, Z.-L., Mitchell, K.E., Chen, F., Ek, M.B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y. (2011). "The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements." Journal of Geophysical Research, Vol. 116, No. D12, p. D12109. https://doi.org/10.1029/2010JD015139
  26. Orth, R. (2013). Persistence of soil moisture - Controls, associated predictability and implications for land surface climate. Ph. D. dissertion, Eidgenossische Technische Hochschule Zurich, Zurich, Swiss, pp. 1-143.
  27. Orth, R., Dutra, E., Trigo, E.I.E., and Balsamo, G. (2017). "Advancing land surface model development with satellite-based Earth observations." Hydrology and Earth System Sciences, Vol. 21, No. 5, pp. 2483-2495. https://doi.org/10.5194/hess-21-2483-2017
  28. Pan, H.L., and Mahrt, L. (1987). "Interaction between soil hydrology and boundary-layer development." Boundary-Layer Meteorology, Vol. 38, No. 1-2, pp. 185-202. https://doi.org/10.1007/BF00121563
  29. Peters-Lidard, C.D., Blackburn, E., Liang, X., and Wood, E.F. (1998). "The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures." Journal of the Atmospheric Sciences, Vol. 55, No. 7, pp. 1209-1224. https://doi.org/10.1175/1520-0469(1998)055<1209:TEOSTC>2.0.CO;2
  30. Peters-Lidard, C.D., Houser, P.R., Tian, Y., Kumar, S.V., Geiger, J., Olden, S., and Mitchell, K. (2007). "High-performance Earth system modeling with NASA/GSFC's land information system." Innovations in Systems and Software Engineering, Vol. 3, No. 3, pp. 157-165. https://doi.org/10.1007/s11334-007-0028-x
  31. Peters-Lidard, C.D., Zion, M.S., and Wood, E.F. (1997). "A soilvegetation-atmosphere transfer scheme for modeling spatially variable water and energy balance processes." Journal of Geophysical Research: Atmospheres, Vol. 102, No. D4, pp. 4303-4324. https://doi.org/10.1029/96JD02948
  32. Rodell, M., Houser, P.R., ambor, U., Gottschalck, J., Mitchell, K., Meng, C., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J.K., Walker, J.P., Lohmann, D., and Toll, D. (2004). "The global land data assimilation system." Bulltin of the American Meteorological Society, Vol. 85, No. 3, pp. 381-394. https://doi.org/10.1175/BAMS-85-3-381
  33. Rodell, M., Houser, P.R., Berg, A.A., and Famiglietti, J.S. (2005). "Evaluation of 10 methods for initializing a land surface model." Journal of Hydrometeorology, Vol. 6, No. 2, pp. 146-155. https://doi.org/10.1175/JHM414.1
  34. Rui, H., and Beaudoing, H. (2019). README document for NASA GLDAS version 2 data products. NASA GSFC, Greenbelt, M.D, U.S., pp. 5-20.
  35. Santanello Jr, J.A., Dirmeyer, P.A., Ferguson, C.R., Findell, K.L., Tawfik, A.B., Berg, A., Ek, M., Gentine, P., Guillod, B.P., Heerwaarden, C. van, Roundy, J., and Wulfmeyer, V. (2018). "Land-atmosphere interactions: the LoCo perspective." Bulletin of the American Meteorological Society, Vol. 99, No. 6, pp. 1253-1272. https://doi.org/10.1175/BAMS-D-17-0001.1
  36. Santanello Jr, J.A., Kumar, S.V., Peters-Lidard, C.D., and Lawston, P.M. (2016). "Impact of soil moisture assimilation on land surface model spinup and coupled land-atmosphere prediction." Journal of Hydrometeorology, Vol. 17, No. 2, pp. 517-540. https://doi.org/10.1175/JHM-D-15-0072.1
  37. Santanello, J.A., Ferguson, C., Ek, M.B., Dirmeyer, P., Tuinenburg, O.A., Jacobs, C.M.J., and Findell, B. (2011). "Local land-atmosphere coupling (LoCo) research: Status and results." Global Energy and Water Cycle Experiment new, Vol. 21, No. 4, pp. 7-9.
  38. Schaake, J.C., Koren, V.I., Duan, Q.Y., Mitchell, K., and Chen, F. (1996). "Simple water balance model for estimating runoff at different spatial and temporal scales." Journal of Geophysical Research: Atmospheres, Vol. 101, No. D3, pp. 7461-7475. https://doi.org/10.1029/95JD02892
  39. Seck, A., Welty, C., and Maxwell, R.M. (2015). "Spin-up behavior and effects of initial conditions for an integrated hydrologic model." Water Resources Research, Vol. 51, No. 4, pp. 2188-2210. https://doi.org/10.1002/2014WR016371
  40. Smirnova, T.G., Brown, J.M., Benjamin, S.G., and Kenyon, J.S. (2016). "Modifications to the Rapid Update Cycle Land Surface Model (RUC LSM) available in the Weather Research and Forecasting (WRF) model." Monthly Weather Review, Vol. 144, No. 5, pp. 1851-1865. https://doi.org/10.1175/MWR-D-15-0198.1
  41. Sulla-Menashe, D., and Friedl, M.A. (2018). User guide to collection 6 MODIS land cover (MCD12Q1 and MCD12C1) product. US Geology Survey, Reston, V.A, U.S., pp. 1-17.
  42. Yang, Z.L., Dickinson, R.E., Henderson Sellers, A., and Pitman, A.J. (1995). "Preliminary study of spin up processes in land surface models with the first stage data of project for intercomparison of land surface parameterization schemes phase 1 (a)." Journal of Geophysical Research: Atmospheres, Vol. 100, No. D8. pp. 16553-16578. https://doi.org/10.1029/95JD01076