DOI QR코드

DOI QR Code

Evaluation of Washing Efficiency of Collective PM by Electrostatic Precipitator in Subway Station Using Nano Bubble

나노버블을 이용한 지하철용 전기집진기 포집먼지에 대한 세척효율 평가

  • Lee, Hyung-Don (Water Environment center, Environmental Technology Division, Korea Testing Laboratory) ;
  • Lee, Seung-Hwan (Royal Industrial Tech Corp. Ritco) ;
  • Park, Chan-gyu (Water Environment center, Environmental Technology Division, Korea Testing Laboratory)
  • 이형돈 (한국산업기술시험원 물환경센터) ;
  • 이승환 ((주)리트코 기술연구소) ;
  • 박찬규 (한국산업기술시험원 물환경센터)
  • Received : 2019.11.28
  • Accepted : 2019.12.18
  • Published : 2020.03.31

Abstract

Air pollutants in a subway are complexly caused by outdoor factors such as ventilating opening and indoor factors such as the movement of passengers on the subway. According to recent research results, most of the air pollutants generated in subway tunnels and stations are caused by indoor variables such as train movement. To control air pollutants such as particulate matter (PM), a prevention facility such as the electrostatic precipitator (EP) or bag filter collector was required in a subway station. In particular, the PM removed by the EP must be kept clean continuously to manage PM effectively. Therefore, a nano-bubbling washing system was developed in this study to clean a contaminated collecting plate in an EP at the main subway tunnel in Seoul. Removal efficiency compared with normal water and nano-bubbling water was likewise studied. As a result, the washing efficiency of collective PM increased in accordance with the increasing of injection pressure, with nano bubbling washing being 130.8% higher than tap water. According to increase in washing times, the maximum washing efficiency was 143.1% higher than tap water, but suitable washing times were less than 3 times. According to the results of the washing efficiency by variation of residence time, it was confirmed that the maximum residence time of nano-bubble water was maintained within 5 minutes.

지하역사 내 대기오염물질은 외부에서 유입되거나 또는 지하철 내부의 승객 승·하차 시 발생하는 등 여러 가지 요인에 의해 복합적으로 발생한다. 최근 연구 결과에 따르면, 지하역사 내 터널 및 지하철역에서 발생하는 대부분의 대기오염물질은 열차풍에 의해 발생되는 것과 같이 내부적 요인에 많은 영향을 많이 받는 것으로 알려져 있다. 이러한 대기오염물질을 제어하기 위해서는 지하철역사 내에 전기집진장치와 같은 집진시설이 필요하며, 집진장치에 의해 제거된 미세먼지를 보다 효율적으로 관리하기 위해서는 집진장치 내부에 지속적인 세척이 필수적이다. 따라서 본 연구에서는 지하역사에 설치할 전기집진장치 내부 집진판에 쌓인 미세먼지를 세척하기 위한 나노버블세척 장치를 개발하였고 나노버블수의 먼지세척효율을 평가하고자 하였다. 실험 결과, 분사압 증가에 따라 세척 효율이 일정하게 증가하였고 나노버블수로 세척할 경우 수돗물로 세척한 경우보다 부착먼지 제거효율이 130.8% 더 증가하였다. 세척횟수 증가에 따라 최대 제거효율은 수돗물에 비해 143.1% 높았지만 적합한 세척횟수는 3회 미만인 것으로 나타났다. 또한 나노버블수 체류시간 변화에 따른 세척효율 실험결과, 나노버블수의 최대 체류시간은 5분 이내로 유지됨을 확인하였다.

Keywords

References

  1. Lee, T. J., Lim, H. J., Kim, S. D., Park, D. S., and Kim, D. S., "Concentration and Properties of Particulate Matters (PM10 and PM2.5) in the Seoul Metropolitan," J. Korean Soc. Atmos. Environ., 31(2), 164-172 (2015). https://doi.org/10.5572/KOSAE.2015.31.2.164
  2. Roh, Y. M., Park, W. M., Lee, C. M., Kim, Y. S., Park, D. S., and Kim, S. W., "A Study of PM levels in Subway Passenger Cabins in Seoul Metropolitan area," J. Korean Soc. Occup. Environ. Hyg., 17(1), 13-20 (2007).
  3. Son, Y. S., and Ryu, J. Y., "Technological Advances for Particulate Matter Collection in Subway System," KIC News, 21(2), 24-34 (2018).
  4. Park, J. H., Park, J. C., and Eum, S. J., "The Estimation of the Diffusion Direction and Velocity of PM10 in a Subway Station - For the Gaehwasan Station of Subway Line 5 in Seoul," J. Korean Soc. Transp., 19(4), 35-47 (2010). https://doi.org/10.4285/jkstn.2010.24.1.35
  5. Karlsson, H. L., Nilsson, L., and Moller, L., "Subway Particles Are More Genotoxic than Street Particles and Induce Oxidative Stress in Cultured Human Lung Cells," Chem. Res. Toxicol., 18, 19-23 (2005). https://doi.org/10.1021/tx049723c
  6. Salma, I., Weidinger, T., and Maenhaut, W., "Time-Resolved Mass Concentration, Composition and Sources of Aerosol Particles in a Metropolitan Underground Railway Station," Atmos. Environ., 41, 8391-8405 (2007). https://doi.org/10.1016/j.atmosenv.2007.06.017
  7. Jung, H. J., Malek, B. A., Koo, Y. S., Jung, J. H., Son, Y. S., Kim, J. C., Kim, H. K., and Ro, C. U., "Chemical Speciation of Size-Segregated Floor Dusts and Airborne Magnetic Particles Collected at Underground Subway Stations in Seoul, Korea," J. HAZARD. MATER., 213, 331-340 (2012). https://doi.org/10.1016/j.jhazmat.2012.02.006
  8. VMugica-Alvarez, V., Figueroa-Lara, J., Romero-Romo, M., Sepulveda-Sanchez, J., and Lopez-Moreno, T., "Concentrations and Properties of Airborne Particles in the Mexico City Subway System," Atmos. Environ., 49, 284-293 (2012). https://doi.org/10.1016/j.atmosenv.2011.11.038
  9. Gustavsson, P., Bigert, C., and Pollan, M., "Incidence of Lung Cancer Among Subway Drivers in Stockholm," AM. J. IND. MED., 51, 545-547 (2008). https://doi.org/10.1002/ajim.20584
  10. Loxham, M., Cooper, M. J., Gerlofs-Nijland, M. E., Cassee, F. R., Davies, D. E., Palmer, M. R., and Teagle, D. A., "Physicochemical Characterization of Airborne Particulate Matter at a Mainline Underground Railway Station," Environ. Sci. Technol., 47, 3614-3622 (2013). https://doi.org/10.1021/es304481m
  11. Kim, K. H., Ho, D. X., Jeon, J. S., and Kim, J. C., "A Noticeable Shift in Particulate Matter Levels after Platform Screen Door Installation in a Korean Subway Station," Atmos. Environ., 49, 219-223 (2012). https://doi.org/10.1016/j.atmosenv.2011.11.058
  12. Son, Y. S., Dinh, T. V., Chung, S. G., Lee, J. H., and Kim, J. C., "Removal of Particulate Matter Emitted from a Subway Tunnel using Magnetic Filters," Environ. Sci. Tehcnol., 48, 2870-2876 (2014). https://doi.org/10.1021/es404502x
  13. Kim, D. Y., Jung, S. H., Shim, S. H., Kim J. T., and Lee, S. S., "Flow Distribution in an Electrostatic Precipitator with a Perforated Plate," Clean Technol., 25(21), 147-152 (2019).
  14. Hyun, D. G., and Chang, H. S., "Theoretical and Computation Analysis on the Pressure Drop in the Cyclone Dust Collector," Clean Technol., 20(3), 263-268 (2014). https://doi.org/10.7464/ksct.2014.20.3.263
  15. Lee, Y. G., "A Study on Reduction Characteristics of Fine Dust in Wet Electrostatic Precipitator for Coal-fired Power Plant," Master Dissertation, Yonsei University, Seoul (2019).
  16. Jung, H. J., Kim, B., Ryu, J. Y., Maskey, S., Kim, J. C., Sohn, J., and Ro, C. U., "Source Identification of Particulate Matter Collected at Underground Subway Stations in Seoul, Korea using Quantitative Singleparticle Analysis," Atmos. Environ., 44, 2287-2293 (2010). https://doi.org/10.1016/j.atmosenv.2010.04.003
  17. Lee, T. J., Jeon, J. S., Kim, S. D., and Kim, D. S., "A Comparative Study on PM10 Source Contributions in a Seoul Metropolitan Subway Station before/after Installing Platform Screen Doors," Korean Soc. Atmos. Environ., 26(5), 543-553 (2010). https://doi.org/10.5572/KOSAE.2010.26.5.543
  18. Lee, J. M., Lee, S. J., and Park, M. H., "Fine Bubble Technology," Polym. Sci. Technol., 29(6), 529-535 (2018).
  19. Ohl, C. D., Arora, M., Dijkink, R., Janve, V., and Lohse, D., "Surface Cleaning from Laser-Induced Cavitation Bubbles," Appl. Phys. Lett., 89(7), 074101-074102-3 (2006). https://doi.org/10.1063/1.2335681
  20. Matsuki, N., Ichiba, S., Ishikawa, T., Nagano, O., Takeda, M., Ujike, Y., and Yamaguchi, T., "Blood Oxygenation using Microbubble Suspensions," Eur. Biophys., 41(6), 571-578 (2012). https://doi.org/10.1007/s00249-012-0811-y
  21. Temesgen, T., Bui, T. T., Han, M. Y., Kim, T. I., and Park, H. J., "Micro and Nanobubble Technologies as a New Horizon for Water-Treatment Techniques: A Review," Adv. Colloid Interface Sci., 246, 40-51 (2017). https://doi.org/10.1016/j.cis.2017.06.011