Acknowledgement
Supported by : NSFC
This work was financially supported by NSFC No. 11801453, No. 11671322, and No. 11901464.
References
- A. Ambrosetti and P. Hess, Positive solutions of asymptotically linear elliptic eigenvalue problems, J. Math. Anal. Appl. 73 (1980), no. 2, 411-422. https://doi.org/10.1016/0022-247X(80)90287-5
- G. Dai, Bifurcation and one-sign solutions of the p-Laplacian involving a nonlinearity with zeros, Discrete Contin. Dyn. Syst. 36 (2016), no. 10, 5323-5345. https://doi.org/10.3934/dcds.2016034
- G. Dai and R. Ma, Unilateral global bifurcation phenomena and nodal solutions for p-Laplacian, J. Differential Equations 252 (2012), no. 3, 2448-2468. https://doi.org/10.1016/j.jde.2011.09.026
- G. Dai, R. Ma, and Y. Lu, Bifurcation from infinity and nodal solutions of quasilinear problems without the signum condition, J. Math. Anal. Appl. 397 (2013), no. 1, 119-123. https://doi.org/10.1016/j.jmaa.2012.07.056
- E. N. Dancer, On the structure of solutions of non-linear eigenvalue problems, Indiana Univ. Math. J. 23 (1973/74), 1069-1076. https://doi.org/10.1512/iumj.1974. 23.23087
- D. G. de Figueiredo and J.-P. Gossez, Strict monotonicity of eigenvalues and unique continuation, Comm. Partial Differential Equations 17 (1992), no. 1-2, 339-346. https://doi.org/10.1080/03605309208820844
- D. D. Hai, Positive solutions for semilinear elliptic equations in annular domains, Non-linear Anal. 37 (1999), no. 8, Ser. A: Theory Methods, 1051-1058. https://doi.org/10.1016/S0362-546X(98)00029-7
- L. Iturriaga, E. Massa, J. Sanchez, and P. Ubilla, Positive solutions for an elliptic equation in an annulus with a superlinear nonlinearity with zeros, Math. Nachr. 287 (2014), no. 10, 1131-1141. https://doi.org/10.1002/mana.201100285
- P.-L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev. 24 (1982), no. 4, 441-467. https://doi.org/10.1137/1024101
- R. Ma, Global behavior of the components of nodal solutions of asymptotically linear eigenvalue problems, Appl. Math. Lett. 21 (2008), no. 7, 754-760. https://doi.org/10.1016/j.aml.2007.07.029
- R. Ma and Y. An, Global structure of positive solutions for nonlocal boundary value problems involving integral conditions, Nonlinear Anal. 71 (2009), no. 10, 4364-4376. https://doi.org/10.1016/j.na.2009.02.113
- R. Ma and Y. An, Global structure of positive solutions for superlinear second order m-point boundary value problems, Topol. Methods Nonlinear Anal. 34 (2009), no. 2, 279-290. https://doi.org/10.12775/TMNA.2009.043
- R. Ma, T. Chen, and Y. Lu, On the Bonheure-Noris-Weth conjecture in the case of linearly bounded nonlinearities, Discrete Contin. Dyn. Syst. Ser. B 21 (2016), no. 8, 2649-2662. https://doi.org/10.3934/dcdsb.2016066
- R. Ma and B. Thompson, Nodal solutions for nonlinear eigenvalue problems, Nonlinear Anal. 59 (2004), no. 5, 707-718. https://doi.org/10.1016/j.na.2004.07.030
- R. Ma and B. Thompson, Multiplicity results for second-order two-point boundary value problems with superlinear or sublinear nonlinearities, J. Math. Anal. Appl. 303 (2005), no. 2, 726-735. https://doi.org/10.1016/j.jmaa.2004.09.002
- M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, corrected reprint of the 1967 original, Springer-Verlag, New York, 1984. https://doi.org/10.1007/978-1-4612-5282-5
- P. H. Rabinowitz, On bifurcation from infinity, J. Differential Equations 14 (1973), 462-475. https://doi.org/10.1016/0022-0396(73)90061-2
- H. Wang, On the existence of positive solutions for semilinear elliptic equations in the annulus, J. Differential Equations 109 (1994), no. 1, 1-7. https://doi.org/10.1006/jdeq.1994.1042
- G. T. Whyburn, Topological Analysis, Princeton Mathematical Series. No. 23, Princeton University Press, Princeton, NJ, 1958.