DOI QR코드

DOI QR Code

심해예인 고해상도 수심 자료와 후방산란 강도 자료를 이용한 인도양 중앙해령 내 Ocean Core Complex 구조의 지형적 특성 분석

Morphological Characteristics of Ocean Core Complexes (OCC) in Central Indian Ridge Using High-Resolution Bathymetry and Backscatter Intensity Data from a Deep-Towed Vehicle

  • 황규하 (한국해양과학기술원 심해저광물자원연구센터) ;
  • 김승섭 (충남대학교 자연과학대학 우주.지질학과) ;
  • 손승규 (한국해양과학기술원 심해저광물자원연구센터) ;
  • 김종욱 (한국해양과학기술원 심해저광물자원연구센터) ;
  • 고영탁 (한국해양과학기술원 심해저광물자원연구센터)
  • Hwang, Gyuha (Deep-sea and Seabed Mineral Resources Research Center, Korea Institute of Ocean Science & Technology) ;
  • Kim, Seung-Sep (Department of Astronomy, Space Science and Geology, College of Natural Sciences Chungnam National University) ;
  • Son, Seung Kyu (Deep-sea and Seabed Mineral Resources Research Center, Korea Institute of Ocean Science & Technology) ;
  • Kim, Jonguk (Deep-sea and Seabed Mineral Resources Research Center, Korea Institute of Ocean Science & Technology) ;
  • Ko, Youngtak (Deep-sea and Seabed Mineral Resources Research Center, Korea Institute of Ocean Science & Technology)
  • 투고 : 2019.10.14
  • 심사 : 2020.02.20
  • 발행 : 2020.03.30

초록

We analyzed the morphological characteristics of OCC (Ocean Core Complexes) in the middle part of the Central Indian Ridge (MCIR) using high-resolution geophysical data recorded on the Deep-Tow SideScan Sonar IMI-30 system. In terms of slope-gradient variations calculated from the high-resolution bathymetry data, the normal faults formed by seafloor spreading were associated generally with slopes > 30° and resulted in high backscatter intensities, which reflect more topographic effects than acoustic medium variation. However, the areas associated with gentle slopes < 10° tend to show the backscatter intensities reflecting the acoustic characteristic of the medium. We show that the detachment faults exposing the OCCs were initiated with high-angle normal faults (58°) exhibiting outward and inward dips of a breakaway zone. In order to examine the spatial distribution of OCC structures, we characterized the transition from magmatic-dominant seafloor with abyssal hills to tectonic-dominant seafloor with OCC using the down-slope direction variation. The slope direction of the seafloor generally tends to be perpendicular to the ridge azimuth in the magmatic-dominant zone, whereas it becomes parallel to the given ridge azimuth near the OCC structures. Therefore, this spatial change of seafloor slope directions indicates that the formation of OCC structures is causally associated with the tectonic-dominant spreading rather than magmatic extension. These results also suggest that the topographical characteristics of seafloor spreading and OCC structures can be distinguished using high-resolution geophysical data. Thus, we propose that the high-resolution bathymetry and backscatter intensity data can help select potential areas of exploitation of hydrothermal deposits in MCIR effectively.

키워드

참고문헌

  1. Korea Ocean Research & Development Institute (2010) Exploration for seafloor hydrothermal deposits and Fe-Mn crusts in the Southwestern Pacific and the Indian Ocean. Ministry of Land, Transport and Maritime Affairs, BSPM54860-2198-5, 311 p
  2. Korea Ocean Research & Development Institute (2011) Exploration for seafloor hydrothermal deposits and Fe-Mn crusts in the Southwestern Pacific and the Indian Ocean. Ministry of Land, Transport and Maritime Affairs, BSPM55880-2295-5, 389 p
  3. Korea Ocean Research & Development Institute (2011) Exploration for seafloor hydrothermal deposits and Fe-Mn crusts in the Southwestern Pacific and the Indian Ocean. Ministry of Land, Transport and Maritime Affairs, BSPM56460-10127-1, 573 p
  4. Korea Institute of Ocean & Technology (2018a) Exploration for seafloor hydrothermal deposits and Fe-Mn crusts in the Southwestern Pacific and the Indian Ocean. Ministry of Oceans and Fisheries, BSPM60320-11534-5, 326 p
  5. Korea Institute of Ocean & Technology (2018b) Exploration for seafloor hydrothermal deposits and Fe-Mn crusts in the Southwestern Pacific and the Indian Ocean. Ministry of Oceans and Fisheries, BSPM60720-11834-5, 401 p
  6. Bagnitsky A, Inzartsev A, Pavin A, Melman S, Morozov M (2011) Side scan sonar using for underwater cables & pipelines tracking by means of AUV. In: 2011 IEEE Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies, Tokyo, 5-8 April 2011, pp 1-10
  7. Ballard RD, Stager LE, Master D, Yoerger D, Mindell D, Whitcomb LL, Singh H, Piechota D (2002) Iron age shipwrecks in deep water off Ashkelon, Israel. Am J Archaeol 106:151. doi:10.2307/4126241
  8. Beaulieu SE, Baker ET, German CR, Maffei A (2013) An authoritative global database for active submarine hydrothermal vent fields. Geochem Geophy Geosy 14:4892-4905. doi:10.1002/2013GC004998
  9. Behn MD, Ito G (2008) Magmatic and tectonic extension at mid-ocean ridges: 1. Controls on fault characteristics. Geochem Geophy Geosy 9:GC001965. doi:10.1029/2008GC001965
  10. Blondel P (2009) The handbook of sidescan sonar. Springer, Berlin, 316 p
  11. Buck WR, Lavier LL, Poliakov ANB (2005) Modes of faulting at mid-ocean ridges. Nature 434:719-723. doi:10.1038/nature03358
  12. Corliss JB, Dymond J, Gordon LI, Edmond JM, von Herzen RP, Ballard RD, Green K, Williams D, Bainbridge A, Crane K, van Andel TH (1979) Submarine thermal springs on the Galapagos Rift. Science 203:1073-1083. doi:10.1126/science.203.4385.1073
  13. Crane K, Normark WR (1977) Hydrothermal activity and crestal structure of the East Pacific Rise at $21^{\circ}N$. J Geophys Res 82:5336-5348. doi:10.1029/JB082i033p05336
  14. Escartin J, Smith DK, Cann J, Schouten H, Langmuir CH, Escrig S (2008) Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature 455:790-794. doi:10.1038/nature07333
  15. Francheteau J, Needham HD, Choukroune P, Juteau T, Seguret M, Ballard RD, Fox PJ, Normark W, Carranza A, Cordoba D, Guerrero J, Rangin C, Bougault H, Cambon P, Hekinian R (1979) Massive deep-sea sulphide ore deposits discovered on the East Pacific Rise. Nature 277:523-528. doi:10.1038/277523a0
  16. Goff JA, Cochran JR (1996) The Bauer scarp ridge jump: A complex tectonic sequence revealed in satellite altimetry. Earth Planet Sc Lett 141:21-33. doi:10.1016/0012-821X(96)00061-1
  17. Heine C, Muller R (2005) Late Jurassic rifting along the Australian North West Shelf: Margin geometry and spreading ridge configuration. Aust J Earth Sci 52:27-39. doi:10.1080/08120090500100077
  18. Hey R, Martinez F, Hoskuldsson A, Benediktsdottir A (2010) Propagating rift model for the V-shaped ridges south of Iceland. Geochem Geophy Geosy 11:GC002865. doi:10.1029/2009GC002865
  19. Ildefonse B, Blackman DK, John BE, Ohara Y, Miller DJ, MacLeod CJ (2007) Oceanic core complexes and crustal accretion at slow-spreading ridges. Geology 35:623. doi:10.1130/G23531A.1
  20. Jackson DR, Richardson MD (2007) High-frequency seafloor acoustics. Springer, New York, 616 p
  21. Kamesh RK, Samudrala K, Drolia R, Amarnath D, Ramachandran R, Mudholkar A (2012) Segmentation and morphology of the Central Indian Ridge between 3 S and 11 S, Indian Ocean. Tectonophysics 554:114-126. doi:10.1016/j.tecto.2012.06.001
  22. Lonsdale P (1977) Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep-Sea Res 24:857-863. doi:10.1016/0146-6291(77)90478-7
  23. Macdonald KC (1982) Mid-ocean ridges: Fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone. Annu Rev Earth Pl Sc 10:155-190. doi:10.1146/annurev.ea.10.050182.001103
  24. McCaig AM, Delacour A, Fallick AE, Castelain T, Fruh-Green GL (2010) Detachment fault control on hydrothermal circulation systems: Interpreting the subsurface beneath the TAG hydrothermal field using the isotopic and geological evolution of oceanic core complexes in the Atlantic. In: Rona PA, Devey CW, Dyment J, Murton BJ (eds) Diversity of hydrothermal systems on slow spreading ocean ridges. American Geophysical Union, Washington DC, pp 207-239
  25. MacLeod CJ, Searle RC, Murton BJ, Casey JF, Mallows C, Unsworth SC, Achenbach KL, Harris M (2009) Life cycle of oceanic core complexes. Earth Planet Sc Lett 287:333-344. doi:10.1016/j.epsl.2009.08.016
  26. Monecke T, Petersen S, Hannington MD, Grant H, Samson I (2016) The minor element endowment of modern seafloor massive sulfide deposits and comparison with deposits hosted in ancient volcanic successions. In: Verplanck PL, Hitzman MW (eds) Rare earth and critical elements in ore deposits. Society of Economic Geologists, McLean, pp 245-306
  27. Morishita T, Hara K, Nakamura K, Sawaguchi T, Tamura A, Arai S, Okino K, Takai K, Kumagai H (2009) Igneous, alteration and exhumation processes recorded in abyssal peridotites and related fault rocks from an oceanic core complex along the Central Indian Ridge. J Petrol 50:1299-1325. doi:10.1093/petrology/egp025
  28. Pak S-J, Moon J-W, Kim J, Chandler MT, Kim H-S, Son J, Son S-K, Choi SK, Baker ET (2017) Widespread tectonic extension at the Central Indian Ridge between $8^{\circ}S$ and $18^{\circ}S$. Gondwana Res 45:163-179. doi:10.1016/j.gr.2016.12.015
  29. Parson LM, Patriat P, Searle RC, Briais AR (1993) Segmentation of the Central Indian Ridge between $12^{\circ}12'S$ and the Indian Ocean triple junction. Mar Geophys Res 15:265-282. doi:10.1007/BF01982385
  30. Perkins WG (1984) Mount Isa silica dolomite and copper orebodies: The result of a syntectonic hydrothermal alteration system. Econ Geol 79:601-637. doi:10.2113/gsecongeo.79.4.601
  31. Phipps MJ, Parmentier EM, Lin J (1987) Mechanisms for the origin of mid-ocean ridge axial topography: Implications for the thermal and mechanical structure of accreting plate boundaries. J Geophys Res 92:12823. doi:10.1029/JB092iB12p12823
  32. Quinn R, Dean M, Lawrence M, Liscoe S, Boland D (2005) Backscatter responses and resolution considerations in archaeological side-scan sonar surveys: A control experiment. J Archaeol Sci 32:1252-1264. doi:10.1016/j.jas.2005.03.010
  33. Sakellariou D, Georgiou P, Mallios A, Kapsimalis V, Kourkoumelis D, Micha P, Theodoulou T, Dellaporta K (2007) Searching for ancient shipwrecks in the Aegean Sea: The discovery of chios and kythnos hellenistic wrecks with the use of marine geological-geophysical methods. Int J Naut Archaeol 36:365-381. doi:10.1111/j.1095-9270.2006.00133.x
  34. Searle R (2013) Mid-ocean ridges. Cambridge University Press, Cambridge, 330 p
  35. Small C (1994) A global analysis of mid-ocean ridge axial topography. Geophys J Int 116:64-84. doi:10.1111/j.1365-246X.1994.tb02128.x
  36. Smith DK, Cann JR, Escartin J (2006) Widespread active detachment faulting and core complex formation near $13^{\circ}N$ on the Mid-Atlantic Ridge. Nature 442:440-443. doi:10.1038/nature04950
  37. Trahan RE, Yeadon DS, Thiele MG (1991) Optimal estimation of layback distance for marine towed cables. IEEE J Oceanic Eng 16:217-222. doi:10.1109/48.84139
  38. Tucholke BE, Lin J, Kleinrock MC (1998) Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge. J Geophys Res-Solid 103:9857-9866. doi:10.1029/98JB00167
  39. Tucholke BE, Behn MD, Buck WR, Lin J (2008) Role of melt supply in oceanic detachment faulting and formation of megamullions. Geology 36(6):455-458. doi:10.1130/G24639A.1
  40. Tyler S, Bull JM, Parson LM, Tuckwell GW (2007) Numerical modeling of non-transform discontinuity geometry: Impications for ridge structure, volcano-tectonic fabric development and hydrothermal activity at segment ends. Earth Planet Sc Lett 257:146-159. doi:10.1016/j.epsl.2007.02.028
  41. Wang Y, Han X, Petersen S, Frische M, Qiu Z, Li Huaiming, Li H, Wu Z, Cui R (2017) Mineralogy and trace element geochemistry of sulfide minerals from the Wocan Hydrothermal Field on the slow-spreading Carlsberg Ridge, Indian Ocean. Ore Geol Rev 84:1-19. doi:10.1016/j.oregeorev.2016.12.020
  42. Wessel P, Smith WHF, Scharroo R, Luis J, Wobbe F (2013) Generic mapping tools: Improved version released. Eos 94:409-410. doi:10.1002/2013EO450001