References
- V.P. Belavkin, "Optimal multiple quantum statistical hypothesis testing", Stochastices, vol.1. pp315-345, 1975. https://doi.org/10.1080/17442507508833114
- V.P. Belavkin and V. Maslov, "Design of optimal dynamic analyzers: Mathematical aspects of wave pattern recognition", Mathematical Aspects of Computer Engineering Advances in Science and Technology in USSR Mir Publishers, 1988.
- C.W. Helstrom, "Quantum Detection and Estimation Theory", Academic Press, New York, 1976.
- C. Mochon, "Family of generalized pretty good measurements and minimal-error pure-state discrimination problems for which they are opyimal", Phys. Rev. A 73,032328, 2006. https://doi.org/10.1103/PhysRevA.73.032328
- Y.C. Eldar, A. Magretski and G.C. Verghese, "Designing optimal quantum dectors via semidefinite programming", IEEE Trans. Inform. Theory 49, pp1007-1012, 2003. https://doi.org/10.1109/TIT.2003.809510
- S.M. Barnett and S. Croke, "Quantum state discrimination", Adv. Opt. Photon. 1, pp 238, 2009. https://doi.org/10.1364/AOP.1.000238
- T. Singal, E. Kim and S. Ghosh, "A structure of minimum error discrimination for linearly independent states", Phys. Rev. A 99, 052334, 2019. https://doi.org/10.1103/PhysRevA.99.052334
- T. Singal and S. Ghosh, "Minimum error discrimination for an ensemble of linearly independent pure states", J. Phys. A: Math. Theor. pp 49, 165304, 2016. https://doi.org/10.1088/1751-8113/49/16/165304
- P. Hausladen and W.K. Wootters, "A pretty good measurement for distinguishing quantum states", J. Mod. Opt 41.pp 2385, 1994. https://doi.org/10.1080/09500349414552221
- P. Wittek, "Quantum Machine Learning-What quantum computing means to data mining", Academic Press, 2014.