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Abstract

In this paper we study the Minimum Error Discrimination problem (MED) for ensembles of linearly independent (LI)

pure states. By constructing a map from the set on those ensembles we show that the Pretty Good Measurement (PGM)

and the optimal measurement for the MED are related by the map.
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1. Introduction

Quantum state discrimination underlies various appli-

cations in quantum information processing tasks. It

essentially describes the distinctivity of quantum systems

in different states, and the general process of extracting

classical information from quantum systems. It is also

useful in quantum information applications, such as

characterization of mutual information in cryptographic

protocols, or as a technique to derive fundamental the-

orems in quantum foundations. It has deep connections

to physical principles such as relativistic causality.

Quantum state discrimination traces a long history of

several decades, starting with early attempts to formal-

ize information processing of physical systems such as

optical communication with photons. Nevertheless, in

most cases, optimal strategies of quantum state discrim-

ination remain unsolved, and related applications are

only valid in some limited cases. Quantum algorithm

has been discovered, especially for some issues related

to number theory and topology using quantum comput-

ing, which can lead to tremendous speed improvements.

These speed improvements can not invalidate existing

encryption techniques, but in the case of symmetric

keys, the length of the key must be taken much larger

to make the encryption technique valid. Quantum-resis-

tant cryptographic algorithms are used in the same

meaning as quantum safety codes. More over, Quantum-

resistant cryptographic algorithms are cryptographic sys-

tems that operates on existing computers resists to quan-

tum attacks. The following Table 1 shows the existing

crypto-algorithms affected by stability. Candidates for

quantum-resistant algorithms largely include grid-based

algorithms, polynomial-based algorithms, hash-based

signature algorithms.

To develop this quantum tolerance algorithm, it is a

quantum identification that must be preceded numeri-

cally and physically, and this discussion has long been

going on. In this paper, we propose a method to solve

the problem of having a minimum error under certain

conditions in a mathematical way.
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Table 1. Cryptographic algorithm

Cryptographic

algorithm
Type Goal

Influence of 

quantum 

computers

AES
Symmetric

key

Encryption 

and decryption
Big size key

SHA-2, 

SHA-3
Hash Hashing

Big size hashed

value(output)

RSA
Public 

key

Digital signature 

and key setting
Not safe

ECDSA, 

ECDH

Public 

key

Digital signature 

and key 

exchange

Not safe

DSA Public keyDigital signature Not safe
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Suppose two people - Alice and Bob - are commu-

nicating. In quantum state discrimination, Alice pro-

vides a collection of states and transform the classical

information to Bob using a quantum mechanical chan-

nel. Bob detects the information by using an appropriate

measurement. A key assumption in this scenario is that

both parties make a prior arrangement concerning the

ensemble of quantum states. We may formulate the dis-

crimination problem in the following way. Formally, we

may formulate the optimization problem in the follow-

ing way. Let  be a d-dimensional Hilbert space. In

preparation, we have an ensemble ,

where  is linearly independent pure

states in  and . The

probabilities  is referred as a priori probabil-

ity, pi > 0 and . Alice choose a quantum state

using the probability distribution {pi} and sends it to

Bob and then Bob must figure out the state using an

appropriate measurement, which minimizes the proba-

bility of a detection error. More explicitly, we seek the

positive operator valued measurement (POVM) with

elements {E1, ..., Ed} that maximizes the probability of

success  subject to Ei for all i

and  Ei=Id. Equivalently, we seek the matrix Z that

minimizes Tr Z subject to  for all i. The

duality problem can be summarized as follows:

If  is an element of the optimal POVM, then

for some Hermitian matrix Z, 

and hence .

Summing over i and using the relation  Ei=Id,

we have 

   

Thus we get the following relations 

and .

From this and[1] and[2] one may prove the following:

An optimal d-POVM  satisfy the relations

(1) 

(2) 

2. An Ensemble of Linearly Independent 
Pure States

In this section, we follow the computation of[7], see

also[8], adapted to the case of linealy independent pure

states. Let us fix a linearly independent states 

and let 

be the set of ensembles of linearly independent pure

states. Let  be an optimal POVM for

. Since the states  are lin-

early independent, there is dual vectors  such

that . Suppose that  for some

k. Define 

where Pk is the projection onto the space spanned by the

n-1 vectors  excluding . Then we have

 

Thus

and 

Then  is not optimal one and hence it sat-

isfies  for all i. 

Let  Then

     

For each k, 

This implies that  and

Thus for each k,  is an eigenvector for Ej

whose eigenvalues are 0 or 1. There is only one 1 eigen-

value. Thus TrEi=1 for all i and EiEj=ijEi.

For a given ensemble , optimal

POVM for P is unique. In fact if  and 

are two optimal POVM for P. Then the convex combina-

tion  is also an optimal POVM

for P. Then by the above calculation, 

Summarizing one can construct the following map

 where  is the set of all POVM

 

P pi i  i  i 1=

d
=

1 , 2 ,, d 

 span 1 , 2 ,, d  =  

p1, , pd

i 1=
d

  pi 1=

ps i 1=
n

pi i Ei i =

i 1=
d

Z pi i  i 

Ei i 1=

d

i 1=
d

pi i Ei i  TrZ=

Z pi i  i – Ei Ei Z pi i  i –  0==

i 1=
d

 

 

 

 

Ei i 1=

d

 

 

i  i 1=

n

 

E Ei i 1=

n
=

P pi, i  i  i 1=

n
= i  i 1=

n

i  i 1=

n

ij  ij= k Ekk  0=

 

i  i 1=

n
k 

 

 

 

E Ei i 1=

n
=

i Eii  0

 

 

 

 

 

Ek k 

P pi, i  i  i 1=

n
=

Ei i 1=

n
E


i i 1=
n

II tEi 1 t– E


i+ = i 1=

n

 

 

OP:    E   E 
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 satisfying the following conditions:

1.  for all i

2. 

3. EiEj = ijEi

and OP(P) = the optimal POVM for P. 

In the below, the inverse map of the map

 will be constructed and this con-

struction provides a good criterion for optimal POVM.

For any element , let OP(P)

=  and let Z= . Then

 is the optimal dual pair for the minimum

error discrimination for P. Define a relation

 by , where

 and  such that i  0,

Tr(i)=1 and  for all i. Given any ,

the optimal dual pair  is uniquely deter-

mined and thus R(P) = Q is uniquely determined. Hence

the map  is well-defined. 

Furthermore,

3. The Pretty Good (PGM)

The Pretty Good Measurement (PGM) can be

described as a map from () to itself. Let

 and let .

Define a map  as follows. For

 where 

such that

Note that by (1) and (2)  is a POVM. To

check the condition (2), 

The condition (4) follows from the following com-

putation:

In the above computation. For an orthonormal

basis  for the Hilbert space  such that

. Then

Using the Singular value decomposition of M = UDV†,

where U, V are Hermitian and D = diag(d1,...,dn) and

MV=UD, †. Summarizing the maps, the

following diagram commutes 

More explicitly, for , let

 be the optimal dual pair. Then OP(P)

=  and  and

, where

Thus

And 

Let . Then

E Ei i 1=

n
=

Ei 0

iEi Id=

OP:    E 

P pi, i  i  i 1=

n
  =

IIi i 1=

n
 E  i 1=

n
pi i  i IIi

IIi i 1=

n
,Z 

R:       qi i i 1=

n

q
i

Tr Z
2
II

i
 

Tr Z
2

 
---------------------=

 

i i  i = P   

IIi i 1=

n
Z 

R:     

 

 

 

Q qi, i  i  i 1=

n
  = q i 1=

n
qi i  i =

PGM:    E 

 

 

 

Ei
q

 i 1=

n

 

 

 

i  i 1=
n

 

M i  qi i =

 

q
1 2–

UD
1–
U=

 

P pi, i  i  i 1=

n
=

IIi i 1=

n
,Z 

IIi i 1=

n
 

 

 

 

 

PGM Q  Ei
q

 i 1=

n
=
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When the map  is bijective, one has

a nice criterion for PGM. For this, one can construct the

inverse of the map. Let 

and let †. Then PGM(Q) =

 where

And

Let 

Define

Now  and define .

Then,

And 

   

    

4. Conclusions

Quantum state discrimination serves as a basic tool

for both quantum information theory and the foundation

of quantum mechanics. Although general theorems

regarding optimal state discrimination remain unsolved,

much progress has been gained in recent years on some

special cases. The technical difficulty in most general

scenario may place strict limitations on the development

of some quantum information tasks. Moreover, since

the quantum state discrimination is closely related to

some existing hard problems, developments in this

direction could lead to new perspectives and challenges.

The present review has provided a comprehensive intro-

duction to quantum state discrimination and its selected

applications.

Following the similar computation given in[3] adapted

to the pure states case one may get the inverse map

. The existence of the map assures that

the following equations 

This result is very simple to discriminate linearly

independent pure states and this will provide a fruitful

data for machine learning for discrimination problem.

That will be next task for this paper.
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