DOI QR코드

DOI QR Code

A Design for the Personalized Difficulty Level Metric based on Learning State

학습 상태에 기반한 맞춤형 난이도 측정을 위한 척도 설계

  • Jung, Woosung (Graduate School of Education, Seoul National University of Education)
  • 정우성 (서울교육대학교 교육전문대학원)
  • Received : 2020.01.20
  • Accepted : 2020.03.20
  • Published : 2020.03.28

Abstract

The 'level of difficulty' is one of the major factors for learners when selecting learning contents. However, the criteria for the difficulty level is mostly defined by the contents providers. This approach does not support the personalized education which should consider the abilities and environments of various learners. In this research, the knowledge of the learners and contents were formalized and generalized to resolve the issue, and object models, including a metric for personalized difficulty level, were designed in order to be applied for experiments. And then, based on 100 contents for music education and 20 learners, we performed simulations with an implemented tool to validate our approach. The experimental results showed that our method can calculate the personalized difficulty levels considering the similarities between the knowledges from the learning state and the contents. Our approach can be effectively applied to the on-line learning management system which contains easy access to the learning state and contents data.

난이도는 학습자가 컨텐츠를 선택하는 중요한 기준 중 하나이다. 하지만, 대부분의 난이도 기준은 컨텐츠 제공자가 획일적으로 결정한다. 이러한 방식으로는 학습자의 다양한 수준과 환경을 고려한 맞춤형 교육을 지원할 수 없다. 본 연구는 이 문제를 해결하기 위하여 학습자와 컨텐츠의 지식을 정형화하고 일반화한 후, 이를 실험하기 위한 객체 모델과 맞춤형 난이도 척도를 설계하였다. 또한, 이를 검증하기 위한 목적으로 구현한 도구를 이용하여 100개의 음악 교육 컨텐츠와 20명의 학습자를 기반으로 시뮬레이션을 진행했다. 실험 결과는 제안한 방법이 학습 상태와 컨텐츠에서 정의한 지식의 유사도를 이용하여 맞춤형 난이도를 계산할 수 있음을 보여 주었다. 제안한 접근법은 학습 상태와 컨텐츠에 쉽게 접근할 수 있는 온라인 학습 시스템에 효과적으로 적용할 수 있다.

Keywords

References

  1. S. Y. Heo & E. G. Kim. (2010). SCORM-based Contents Organization System on Learners' Level. The Korea Institute of Information and Communication Engineering, 14(5), 1277-1283. DOI : 10.6109/JKIICE.2010.14.5.1277
  2. C. H. Kim, H. D. Ko & B. K. Kim. (2005). Item Difficulty Analysis of Learning Contents Based on SCORM. Proceedings of the Korean Information Science Society Conference. (pp. 358-360). Seoul : KIISE.
  3. A. Baylari & G. A. Montazer. (2009). Design a personalized e-learning system based on item response theory and artificial neural network approach. Expert Systems with Applications, 36(4), 8013-8021. DOI : 10.1016/J.ESWA.2008.10.080
  4. H. J. Lee & S. T. Park. (2015). Analysis on Knowledge State of Inquiry Abilities of Elementary School Students on Electric Circuits. Journal of The Korean Association for Science Education, 35(5), 857-870. DOI : 10.14697/JKASE.2015.35.5.0857
  5. M. B. Yoon. (2011). Investigating the Effects of Teaching Bassed on an Analysis of High School Students' Knowledge State of Concepts Associated with Astronomical Observation. Journal of the Korean Earth Science Society, 32(7), 902-912. DOI : 10.5467/JKESS.2011.32.7.902
  6. J. H. Lee. (2017). Knowledge State Analysis of the Elementary School Plane Figure unit Using the Knowledge Space Theory. Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, 7(5), 13-31. DOI : 10.14257/AJMAHS.2017.05.08
  7. P. Gao. (2014). Using Personalized Education to Take the Place of Standardized Education. Journal of Education and Training Studies, 2(2), 44-47. DOI : 10.11114/JETS.v2i2.269
  8. I. S. Choi. (2005). A Comparative Study on Modeling Readability Formulas: Focus on Primary and Secondary Textbooks. Journal of the Korean Society for information Management, 22(4), 173-195. DOI : 10.3743/KOSIM.2005.22.4.173
  9. Chih-Ming Chen. (2008). Intelligent web-based learning system with personalized learning path guidance. Computers & Education, 51(2), 787-814. DOI : 10.1016/J.COMPEDU.2007.08.004
  10. W. Jung. (2019). A Genetic Algorithm Based Learning Path Optimization for Music Education. Journal of the Korea Convergence Society, 10(2), 13-20. DOI : 10.15207/JKCS.2019.10.2.013
  11. J. Han, J. Jo & H. Lim (2018). Development of Personzlied Learning Course Recommendation Model for ITS. Journal of the Korea Convergence Society, 9(10), 21-28. DOI : 10.15207/JKCS.2018.9.10.021
  12. T. Cho (2016). Intelligent learning system based on the profile of learner. Journal of Digital Convergence, 14(2), 227-233. DOI : 10.14400/JDC.2016.14.2.227
  13. M. A. Chatti & A. Muslim. (2019). The PERLA Framework: Blending Personalization and Learning Analytics. International Review of Research in Open and Distributed Learning, 20(1), 243-261. DOI : 10.19173/IRRODL.v20i1.3936
  14. A. Ramachandran & B. Scassellati. (2014). Adapting Difficulty Levels in Personalized Robot-Child Tutoring Interactions. AAAI Conference on Artificial Intelligence. (pp. 56-59). USA: AAAI.
  15. A. Jones & G. Castellano. (2018). Adaptive Robotic Tutors that Support Self-Regulated Learning: A Longer-Term Investigation with Primary School Children, International Journal of Social Robotics, 10(3), 357-370. DOI : 10.1007/s12369-017-0458-z
  16. F. Essalmi, L. J. E. Ayed, M. Jemni, S. Graf & Kinshuk. (2014). Generalized metrics for the analysis of E-learning personalization strategies. Computers in Human Behavior, 48(1), 310-322. DOI : 10.1016/J.CHB.2014.12.050
  17. K. Kim & H. Shin (2016). Student-oriented Multi-dimensional Analysis System using Educational Profiling. Journal of Digital Convergence, 9(10), 263-270. DOI : 10.14400/JDC.2016.14.6.263
  18. R. Reber, E. A. Canning & J. M. Harackiewicz. (2018). Personlized Education to Increase Interest. Current Directions in Psychological Science, 27(7), 449-454. DOI : 10.1177/0963721418793140