DOI QR코드

DOI QR Code

Dynamics of Nitrogen Compounds and Functional Genes in a Nitrification-Denitrification Coupling Process

질산화-탈질 연계공정에서 질소화합물 및 기능성 유전자 거동

  • Kwon, Ji-Hyeon (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Park, Hyung-Joo (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Lee, Yun-Yeong (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
  • 권지현 (이화여자대학교 환경공학과) ;
  • 박형주 (이화여자대학교 환경공학과) ;
  • 이윤영 (이화여자대학교 환경공학과) ;
  • 조경숙 (이화여자대학교 환경공학과)
  • Received : 2019.09.10
  • Accepted : 2019.10.29
  • Published : 2020.03.28

Abstract

The dynamics of nitrogen compounds and RNA-based functional genes were characterized in the nitrification-denitrification coupling process. For the removal of residual ammonium, intermittent aeration was introduced in the denitrification reactor. N2O production was not observed in both reactors. In both reactors, the nitrifying genes (achaeal-amoA, bacterial-amoA and hor) and denitrifying genes (narG, nirK, norB and nosZ) had a copy number of 3.92 × 102-7.25 × 105 and 2.85 × 102-3.06 × 104 per ng of DNA, respectively. These results suggest that denitrification and nitrification reactions occur in both the nitrification and denitrification reactors, respectively. Therefore, the coupling process is a promising one for the conversion of ammonium to nitrogen without generating N2O.

Keywords

References

  1. Jin P, Chen Y, Xu T, Chi Z, Zheng Z. 2019. Efficient nitrogen removal by simultaneous heterotrophic nitrifying-aerobic denitrifying bacterium in a purification tank bioreactor amended with two-stage dissolved oxygen control. Bioresour. Technol. 281: 392-400. https://doi.org/10.1016/j.biortech.2019.02.119
  2. Zanetti L, Frison N, Nota E, Tomizioli M, Bolzonella D, Fatone F. 2012. Progress in real-time control applied to biological nitrogen removal from wastewater. A short-review. Desalination 286: 1-7. https://doi.org/10.1016/j.desal.2011.11.056
  3. Antileo C, Werner A, Ciudad G, MunoZC, Bornhardt C, Jeison D, et al. 2006. Novel operational strategy for partial nitrification to nitrite in a sequencing batch rotating disk reactor. Biochem. Eng. J. 32: 69-78. https://doi.org/10.1016/j.bej.2006.09.003
  4. Gao J, Duan Y, Liu Y, Zhuang X, Liu Y, Bai Z, et al. 2019. Long-and short-chain AHLs affect AOA and AOB microbial community composition and ammonia oxidation rate in activated sludge. J. Environ. Sci. 78: 53-62. https://doi.org/10.1016/j.jes.2018.06.022
  5. Wunderlin P, Mohn J, Joss A, Emmenegger L, Siegrist H. 2012. Mechanisms of $N_{2}O$ production in biological wastewater treatment under nitrifying and denitrifying conditions. Water. Res. 46: 1027-1037. https://doi.org/10.1016/j.watres.2011.11.080
  6. Zheng Y, Hou L, Liu M, Newell S, Yin G, Yu C, et al. 2017. Effects of silver nanoparticles on nitrification and associated nitrous oxide production in aquatic environments. Sci. Adv. 3: 1-11.
  7. Zumft WG. 1997. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61: 533-616. https://doi.org/10.1128/.61.4.533-616.1997
  8. Chai H, Xiang Y, Chen R, Shao Z, Gu L, Li L, et al. 2019. Enhanced simultaneous nitrification and denitrif ication in treating low carbon-to-nitrogen ratio wastewater: Treatment performance and nitrogen removal pathway. Bioresour. Technol. 280: 51-58. https://doi.org/10.1016/j.biortech.2019.02.022
  9. Chen Y, He H, Liu H, Li H, Zeng G, Xia X, et al. 2018. Effect of salinity on removal performance and activated sludge characteristics in sequencing batch reactors. Bioresour. Technol. 249: 890-899. https://doi.org/10.1016/j.biortech.2017.10.092
  10. He H, Chen Y, Li X, Cheng Y, Yang C, Zeng G. 2017. Influence of salinity on microorganisms in activated sludge processes: A review. Int. Biodeterior. Biodegrad. 119: 520-527. https://doi.org/10.1016/j.ibiod.2016.10.007
  11. Herrmann E, Young W, Rosendale D, Conrad R, Riedel CU, Egert M. 2017. Determination of resistant starch assimi lating bacteria in fecal samples of mice by in vitro RNA-based stable isotope probing. Front. Microbiol. 8: 1331. https://doi.org/10.3389/fmicb.2017.01331
  12. Fan Z, Zeng W, Wang B, Chang S, Peng Y. 2019. Analysis of microbial community in a continuous flow process at gene and transcription level to enhance biological nutrients removal from municipal wastewater. Bioresour. Technol. 286: 121374. https://doi.org/10.1016/j.biortech.2019.121374
  13. Su Q, Ma C, Domingo-Félez C, Kiil AS, Thamdrup B, Jensen MM, et al. 2017. Low nitrous oxide production through nitrifierdenitrification in intermittent-feed high-rate nitritation reactors. Water. Res. 123: 429-438. https://doi.org/10.1016/j.watres.2017.06.067
  14. Chen L, Hoff SJ. 2012. A two-stage wood chip-based biofilter system to mitigate odors from a deep-pit swine building. Appl. Eng. Agric. 28: 893-901. https://doi.org/10.13031/2013.42476
  15. Lee YY, Choi H, Cho KS. 2019. Effects of carbon source, C/N ratio, nitrate, temperature, and pH on $N_2O$ emission and functional denitrifying genes during heterotrophic deni trification. J. Environ. Sci. Heal. - Part A Toxic/Hazardous. Subst. Environ. Eng. 54: 16-29. https://doi.org/10.1080/10934529.2018.1503903
  16. Kim TG, Moon KE, Yun J, Cho KS. 2013. Comparison of RNA- and DNA-based bacterial communities in a lab-scale methanedegrading biocover. Appl. Microbiol. Biotechnol. 97: 3171-3181. https://doi.org/10.1007/s00253-012-4123-z
  17. Kim TG, Yi T, Lee EH, Ryu HW, Cho KS. 2012. Characterization of a methane-oxidizing biofilm using microarray, and confocal microscopy with image and geostatic analyses. Appl. Microbiol. Biotechnol. 95: 1051-1059. https://doi.org/10.1007/s00253-011-3728-y
  18. Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB. 2005. Ubiqity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. USA 102: 14683-14688. https://doi.org/10.1073/pnas.0506625102
  19. Rotthauwe JH, Witzel KP, Liesack W. 1997. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63: 4704-4712. https://doi.org/10.1128/AEM.63.12.4704-4712.1997
  20. Schmid MC, Hooper AB, Klotz MG, Woebken D, Lam P, Kuypers MMM, et al. 2008. Environmental detection of octahaem cytochrome c hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium-oxidizing bacteria. Environ. Microbiol. 10: 3140-3149. https://doi.org/10.1111/j.1462-2920.2008.01732.x
  21. Schreiber F, Wunderlin P, Udert KM, Wells GF. 2012. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: Biological pathways, chemical reactions, and novel technologies. Front. Microbiol. 3: 372. https://doi.org/10.3389/fmicb.2012.00372
  22. Bru D, Sarr A, Philippot L. 2007. Relative abundances of proteobacterial membrane-bound and periplasmic nitrate reductases in selected environments. Appl. Environ. Microbiol. 73: 5971-5974. https://doi.org/10.1128/AEM.00643-07
  23. Henry S, Baudoin E, Lopez-Gutierrez JC, Martin-Laurent F, Brauman A, Philippot L. 2004. Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J. Microbiol. Methods 59: 327-335. https://doi.org/10.1016/j.mimet.2004.07.002
  24. Song K, Suenaga T, Hamamoto A, Satou K, Riya S, Hosomi M, et al. 2014. Abundance, transcription levels and phyl ogeny of bacteria capable of nitrous oxide reduction in a municipal wastewater treatment plant. J. Biosci. Bioeng. 118: 289-297. https://doi.org/10.1016/j.jbiosc.2014.02.028
  25. Casciotti KL, Ward BB. 2005. Phylogenetic analysis of nitric oxide reductase gene homologues from aerobic ammonia-oxidizing bacteria. FEMS Microbiol. Ecol. 52: 197-205. https://doi.org/10.1016/j.femsec.2004.11.002
  26. Henry S, Bru D, Stres B, Hallet S, Philippot L. 2006. Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl. Environ. Microbiol. 72: 5181-5189. https://doi.org/10.1128/AEM.00231-06
  27. Li P, Wang S, Peng Y, Liu Y, He J. 2015. The synergistic effects of dissolved oxygen and pH on $N_{2}O$ production in biological domestic wastewater treatment under nitrifying conditions. Environ. Technol. 36: 1623-1631. https://doi.org/10.1080/09593330.2014.1002862
  28. Rodriguez-Caballero A, Aymerich I, Poch M, Pijuan M. 2014. Evaluation of process conditions triggering emissions of greenhouse gases from a biological wastewater treatment system. Sci. Total Environ. 493: 384-391. https://doi.org/10.1016/j.scitotenv.2014.06.015
  29. Zhu X, Chen Y. 2011. Reduction of $N_2O$ and NO generation in anaerobic-aerobic (low dissolved oxygen) biological wastewater treatment process by using sludge alkaline fermentation liquid. Environ. Sci. Technol. 45: 2137-2143. https://doi.org/10.1021/es102900h
  30. Marin JCA, Caravelli AH, Zaritzky NE. 2019. Performance of anoxic-oxic sequencing batch reactor for nitrification and aerobic denitrification. Biotechnol. Bioeng. 1-22, doi: 10.5772/intechopen.84775.
  31. Limpiyakorn T, Kurisu F, Sakamoto Y, Yagi O. 2007. Effects of ammonium and nitrite on communities and populations of ammonia-oxidizing bacteria in laboratory-scale continuousflow reactors. FEMS Microbiol. Ecol. 60: 501-512. https://doi.org/10.1111/j.1574-6941.2007.00307.x
  32. Quan ZX, Rhee SK, Zuo JE, Yang Y, Bae JW, Park JR, Lee ST, Park YH. 2008. Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environ. Microbiol. 10: 3130-3139. https://doi.org/10.1111/j.1462-2920.2008.01642.x
  33. Ma B, Peng Y, Zhang S, Wang J, Gan Y, Chang J, Wang S, Wang S, Zhu G. 2013. Performance of anammox UASB reactor treating low strength wastewater under moderate and low temperatures. Bioresour. Technol. 129: 606-611. https://doi.org/10.1016/j.biortech.2012.11.025
  34. Ye L, Zhang T. 2011. Ammonia-oxidizing bacteria dominates over ammonia-oxidizing archaea in a saline nitrification reactor under low DO and high nitrogen loading. Biotechnol. Bioeng. 108: 2544-2552. https://doi.org/10.1002/bit.23211
  35. Mosier AC, Francis CA. 2008. Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary. Environ. Microbiol. 10: 3002-3016. https://doi.org/10.1111/j.1462-2920.2008.01764.x
  36. Zhi W, Ji G. 2014. Quantitative response relationships between nitrogen transformation rates and nitrogen functional genes in a tidal flow constructed wetland under C/N ratio constraints. Water. Res. 64: 32-41. https://doi.org/10.1016/j.watres.2014.06.035
  37. Ji G, Zhi W, Tan Y. 2012. Association of nitrogen micro-cycle functional genes in subsurface wastewater infiltration systems. Ecol. Eng. 44: 269-277. https://doi.org/10.1016/j.ecoleng.2012.04.007
  38. Poo KM, Im JH, Jun BH, Kim JR, Hwang IS, Choi KS, et al. 2006. Full-cyclic control strategy of SBR for nitrogen removal in strong wastewater using common sensors. Water. Sci. Technol. 53: 151-160.
  39. Ji B, Yang K, Zhu L, Jiang Yu, Wang H, Zhou J, et al. 2015. Aerobic denitrification: A review of important advances of the last 30 years. Biotechnol. Bioprocess Eng. 20: 643-651. https://doi.org/10.1007/s12257-015-0009-0