참고문헌
- Malhotra B, Keshwani A, Kharkwal H. 2015. Antimicrobial food packaging: potential and pitfalls. Front Microbiol. 6: 611. https://doi.org/10.3389/fmicb.2015.00611
- Niu B, Shao P, Chen H, Sun P. 2019. Structural and physiochemical characterization of novel hydrophobic packaging films based on pullulan derivatives for fruits preservation. Carbohydr. Polym. 208: 276-284. https://doi.org/10.1016/j.carbpol.2018.12.070
- Liu X, Han W, Zhu Y, Xuan H, Ren J, Zhang J, et al. 2018. Antioxidative and antibacterial self-healing edible polyelectrolyte multilayer film in fresh-cut fruits. J. Nanosci. Nanotechnol. 18: 2592-2600. https://doi.org/10.1166/jnn.2018.14316
- Shaikh M, Haider S, Ali TM, Hasnain A. 2019. Physical, thermal, mechanical and barrier properties of pearl millet starch films as affected by levels of acetylation and hydroxypropylation. Int. J. Biol. Macromol. 124: 209-219. https://doi.org/10.1016/j.ijbiomac.2018.11.135
- Pereira dos Santos E, Nicacio PHM, Coelho Barbosa F, Nunes da Silva H, Andrade ALS, Lia Fook MV, et al. 2019. Chitosan/essential oils formulations for potential use as wound dressing: physical and antimicrobial properties. Materials (Basel) 12: 2223. https://doi.org/10.3390/ma12142223
- Gao HX, He Z, Sun Q, He Q, Zeng WC. 2019. A functional polysaccharide film forming by pectin, chitosan, and tea polyphenols. Carbohydr. Polym. 215: 1-7. https://doi.org/10.1016/j.carbpol.2019.03.029
- Zhong Y, Zhuang C, Gu W, Zhao Y. 2019. Effect of molecular weight on the properties of chitosan films prepared using electrostatic spraying technique. Carbohydr. Polym. 212: 197-205. https://doi.org/10.1016/j.carbpol.2019.02.048
- Abanoz HS, Kunduhoglu B. 2018. Antimicrobial activity of a bacteriocin produced by Enterococcus faecalis KT11 against some Pathogens and antibiotic-eesistant bacteria. Korean J. Food Sci. Anim. Resour. 38: 1064-1079. https://doi.org/10.5851/kosfa.2018.e40
- Miceli de Farias F, dos Santos Nascimento J, Cabral da Silva Santos O, de Freire Bastos M do C. 2019. Study of the effectiveness of staphylococcins in biopreservation of Minas fresh (Frescal) cheese with a reduced sodium content. Int. J. Food Microbiol. 304: 19-31. https://doi.org/10.1016/j.ijfoodmicro.2019.05.014
- Sun C, Li Y, Cao S, Wang H, Jiang C, Pang S, et al. 2018. Antibacterial activity and mechanism of action of bovine lactoferricin derivatives with symmetrical amino acid sequences. Int. J. Mol. Sci. 19: 2951. https://doi.org/10.3390/ijms19102951
- Silva F, Domingues FC. 2017. Antimicrobial activity of coriander oil and its effectiveness as food preservative. Crit. Rev. Food Sci. Nutr. 57: 35-47. https://doi.org/10.1080/10408398.2013.847818
- Hu Q, Zhou M, Wei S. 2018. Progress on the antimicrobial activity research of clove oil and eugenol in the food antisepsis field. J. Food Sci. 83: 1476-1483. https://doi.org/10.1111/1750-3841.14180
- Elshafie HS, Gruľova D, Baranova B, Caputo L, De Martino L, Sedlak V, et al. 2019. Antimicrobial activity and chemical composition of essential oil extracted from Solidago canadensis L. growing wild in Slovakia. Molecules 24(7). pii: E1206.
- de Rostro-Alanis MJ, Baez-Gonzalez J, Torres-Alvarez C, Parra- Saldivar R, Rodriguez-Rodriguez J, Castillo S. 2019. Chemical composition and biological activities of oregano essential oil and its fractions obtained by vacuum distillation. Molecules 24(10). pii: E1904.
- Almeida ET da C, de Souza GT, de Sousa Guedes JP, Barbosa IM, de Sousa CP, Castellano LRC, et al. 2019. Mentha piperita L. essential oil inactivates spoilage yeasts in fruit juices through the perturbation of different physiological functions in yeast cells. Food Microbiol. 82: 20-29. https://doi.org/10.1016/j.fm.2019.01.023
- Shi Y, Huang S, He Y, Wu J, Yang Y. 2018. Navel orange peel essential oil to control food spoilage molds in potato slices. J. Food Prot. 81: 1496-1502. https://doi.org/10.4315/0362-028X.JFP-18-006
- Marchese A, Barbieri R, Coppo E, Orhan IE, Daglia M, Nabavi SF, et al. 2017. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol. 43: 668-689. https://doi.org/10.1080/1040841X.2017.1295225
- Zhang Y, Wang Y, Zhu X, Cao P, Wei S, Lu Y. 2017. Antibacterial and antibiofilm activities of eugenol from essential oil of Syzygium aromaticum (L.) Merr. & L. M. Perry (clove) leaf against periodontal pathogen Porphyromonas gingivalis. Microb. Pathog. 113: 396-402. https://doi.org/10.1016/j.micpath.2017.10.054
- Mohamed MSM, Abdallah AA, Mahran MH, Shalaby AM. 2018. Potential alternative treatment of ocular bacterial infections by oil derived from Syzygium aromaticum flower (Clove). Curr. Eye Res. 43: 873-881. https://doi.org/10.1080/02713683.2018.1461907
- Devi KP, Sakthivel R, Nisha SA, Suganthy N, Pandian SK. 2013. Eugenol alters the integrity of cell membrane and acts against the nosocomial pathogen Proteus mirabilis. Arch Pharm. Res. 36: 282-292. https://doi.org/10.1007/s12272-013-0028-3
- Devi KP, Nisha SA, Sakthivel R, Pandian SK. 2010. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol. 130: 107-115. https://doi.org/10.1016/j.jep.2010.04.025
- Xu J-G, Liu T, Hu Q-P, Cao X-M. 2016. Chemical composition, antibacterial properties and mechanism of action of essential oil from clove buds against Staphylococcus aureus. Molecules 21: 1194. https://doi.org/10.3390/molecules21091194
- Pinto E, Vale-Silva L, Cavaleiro C, Salgueiro L. 2009. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J. Med. Microbiol. 58: 1454-1462. https://doi.org/10.1099/jmm.0.010538-0
- Kfoury M, Auezova L, Greige-Gerges H, Fourmentin S. 2015. Promising applications of cyclodextrins in food: Improvement of essential oils retention, controlled release and antiradical activity. Carbohydr. Polym. 131: 264-272. https://doi.org/10.1016/j.carbpol.2015.06.014
- Burt S. 2004. Essential oils: their antibacterial properties and potential applications in foods-a review. Int. J. Food Microbiol. 94: 223-253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
-
Kotronia M, Kavetsou E, Loupassaki S, Kikionis S, Vouyiouka S, Detsi A. 2017. Encapsulation of Oregano (Origanum onites L.) essential oil in
${\beta}$ -Cyclodextrin (${\beta}$ -CD): synthesis and characterization of the inclusion complexes. Bioengineering 4(3). pii: E74. -
Sun X, Sui S, Ference C, Zhang Y, Sun S, Zhou N, et al. 2014. Antimicrobial and mechanical properties of
${\beta}$ -cyclodextrin inclusion with essential oils in chitosan films. J. Agric. Food Chem. 62: 8914- 8918. https://doi.org/10.1021/jf5027873 - Del Valle EMM. 2004. Cyclodextrins and their uses: A review. Process Biochem. 39: 1033-1046. https://doi.org/10.1016/S0032-9592(03)00258-9
- Qi Q, Zimmermann W. 2005. Cyclodextrin glucanotransferase: From gene to applications. Appl. Microbiol. Biotechnol. 66: 475-485. https://doi.org/10.1007/s00253-004-1781-5
- Zain WSWM, Illias RM, Salleh MM, Hassan O, Rahman RA, Hamid AA. 2007. Production of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. TS1-1: Optimization of carbon and nitrogen concentration in the feed medium using central composite design. Biochem. Eng. J. 33: 26-33. https://doi.org/10.1016/j.bej.2006.09.024
- Leemhuis H, Kelly RM, Dijkhuizen L. 2010. Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications. Appl. Microbiol. Biotechnol. 85: 823-835. https://doi.org/10.1007/s00253-009-2221-3
-
Park CS, Park KH, Kim SH. 1989. A rapid screening method for alkaline
${\beta}$ -cyclodextrin glucanotransferase using phenolphthaleinmethyl orange-containingsolid medium. Agric. Biol. Chem. 53: 1167-1169. https://doi.org/10.1271/bbb1961.53.1167 - Goel A, Nene SN. 1995. Modifications in the Phenolphthalein method for spectrophotometric estimation of beta cyclodextrin. Starch‐Starke 47: 399-400. https://doi.org/10.1002/star.19950471006
- Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Assis GBN, Pereira FL, Zegarra AU, Tavares GC, Leal CA, Figueiredo HCP. 2017. Use of MALDI-TOF mass spectrometry for the fast identification of gram-positive fish pathogens. Front. Microbiol. 8: 1492. https://doi.org/10.3389/fmicb.2017.01492
- Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67: 1613-1617. https://doi.org/10.1099/ijsem.0.001755
- Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
- Ferrarotti SA, Rosso AM, Marechal MA, Krymkiewicz N, Marechal LR. 1996. Isolation of two strains (S-R type) of Bacillus circulans and purification of a cyclomaltodextrin-glucanotransferase. Cell Mol. Biol. (Noisy-le-grand) 42: 653-657.
- Deng Z, Wang F, Zhou B, Li J, Li B, Liang H. 2019. Immobilization of pectinases into calcium alginate microspheres for fruit juice application. Food Hydrocoll. 89: 691-699. https://doi.org/10.1016/j.foodhyd.2018.11.031
- Sophianopoulos AJ, Warner IM. 1992. Purification of beta-cyclodextrin. Anal. Chem. 64: 2652-2654. https://doi.org/10.1021/ac00045a033
- Tongnuanchan P, Benjakul S. 2014. Essential Oils: Extraction, bioactivities, and their uses for food preservation. J. Food Sci. 79: 1231-1249. https://doi.org/10.1111/1750-3841.12492
-
Ayala-Zavala JF, Soto-Valdez H, Gonzalez-Leon A, Alvarez-Parrilla E, Martin-Belloso O, Gonzalez-Aguilar GA. 2008. Microencapsulation of cinnamon leaf (Cinnamomum zeylanicum) and garlic (Allium sativum) oils in
${\beta}$ -cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 60: 359-368. https://doi.org/10.1007/s10847-007-9385-1 -
Ye Y, Zhu M, Miao K, Li X, Li D, Mu C. 2017. Development of antimicrobial gelatin-based edible films by incorporation of transanethole/
${\beta}$ -cyclodextrin inclusion complex. Food Bioprocess Technol. 10: 1844-1853. https://doi.org/10.1007/s11947-017-1954-8 - Lawrence HA, Palombo EA. 2009. Activity of essential oils against Bacillus subtilis spores. J. Microbiol. Biotechnol. 19: 1590-1595. https://doi.org/10.4014/jmb.0904.04016
- Liang JB, Chen YQ, Lan CY, Tam NFY, Zan QJ, Huang LN. 2007. Recovery of novel bacterial diversity from mangrove sediment. Mar. Biol. 150: 739-747. https://doi.org/10.1007/s00227-006-0377-2
- Mendes L, Tsai S, Mendes LW, Tsai SM. 2014. Variations of bacterial community structure and composition in mangrove sediment at different depths in southeastern Brazil. Diversity 6: 827-843. https://doi.org/10.3390/d6040827
- Rahi P, Prakash O, Shouche YS. 2016. Matrix-assisted laser desorption/ionization time-of-flight Mass-Spectrometry (MALDI-TOF MS) based microbial identifications: challenges and scopes for microbial ecologists. Front. Microbiol. 7: 1359.
- Strejcek M, Smrhova T, Junkova P, Uhlik O. 2018. Whole-cell MALDI-TOF MS versus 16S rRNA gene analysis for identification and dereplication of recurrent bacterial isolates. Front. Microbiol. 9: 1294. https://doi.org/10.3389/fmicb.2018.01294
- Timperio AM, Gorrasi S, Zolla L, Fenice M. 2017. Evaluation of MALDI-TOF mass spectrometry and MALDI BioTyper in comparison to 16S rDNA sequencing for the identification of bacteria isolated from Arctic sea water. PLoS One 12: e0181860. https://doi.org/10.1371/journal.pone.0181860
- Es I, Ribeiro MC, dos Santos Junior SR, Khaneghah AM, Rodriguez AG, Amaral AC. 2016. Production of cyclodextrin glycosyltransferase by immobilized Bacillus sp. on chitosan matrix. Bioprocess Biosyst. Eng. 39: 1487-1500. https://doi.org/10.1007/s00449-016-1625-6
- de Araujo Coelho SL, Magalhaes VC, Marbach PAS, Cazetta ML. 2016. A new alkalophilic isolate of Bacillus as a producer of cyclodextrin glycosyltransferase using cassava flour. Braz. J. Microbiol. 47: 120-128. https://doi.org/10.1016/j.bjm.2015.11.018
- Blanco KC, De Lima CJB, Monti R, Martins J, Bernardi NS, Contiero J. 2012. Bacillus lehensis - An alkali-tolerant bacterium isolated from cassava starch wastewater: Optimization of parameters for cyclodextrin glycosyltransferase production. Ann. Microbiol. 62: 329-337. https://doi.org/10.1007/s13213-011-0266-x
- Ivanova V. 2010. Immobilization of cyclodextrin glucanotransferase from Paenibacillus macerans atcc 8244 on magnetic carriers and production of cyclodextrins. Biotechnol. Biotechnol. Equip. 24: 516-528. https://doi.org/10.1080/13102818.2010.10817893
- Reddy SV, More SS, Annappa GS. 2017. Purification and properties of beta-cyclomaltodextrin glucanotransferase from Bacillus flexus SV 1. J. Basic Microbiol. 57: 974-981. https://doi.org/10.1002/jobm.201700270
- Mora MMM, Sanchez KH, Santana RV, Rojas AP, Ramirez HL, Torres-Labandeira JJ. 2012. Partial purification and properties of cyclodextrin glycosiltransferase (CGTase) from alkalophilic Bacillus species. Springerplus 1: 61. https://doi.org/10.1186/2193-1801-1-61
- Li Y, Zhu C, Zhai X, Zhang Y, Duan Z, Sun J. 2018. Optimization of enzyme assisted extraction of polysaccharides from pomegranate peel by response surface methodology and their anti-oxidant potential. Chin. Herb Med. 10: 416-423. https://doi.org/10.1016/j.chmed.2018.08.007
- Vijayaraghavan P, Arasu MV, Anantha Rajan R, Al-Dhabi NA. 2019. Enhanced production of fibrinolytic enzyme by a new Xanthomonas oryzae IND3 using low-cost culture medium by response surface methodology. Saudi J. Biol. Sci. 26: 217-224. https://doi.org/10.1016/j.sjbs.2018.08.029
- Khan YM, Munir H, Anwar Z. 2019. Optimization of process variables for enhanced production of urease by indigenous Aspergillus niger strains through response surface methodology. Biocatal Agric. Biotechnol. 20: 101202. https://doi.org/10.1016/j.bcab.2019.101202
- Bas D, Boyaci IH. 2007. Modeling and optimization II: Comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction. J. Food Eng. 78: 846-854. https://doi.org/10.1016/j.jfoodeng.2005.11.025
- Vassileva A, Atanasova N, Ivanova V, Dhulster P, Tonkova A. 2007. Characterisation of cyclodextrin glucanotransferase from Bacillus circulans ATCC 21783 in terms of cyclodextrin production. Ann. Microbiol. 57: 609-615. https://doi.org/10.1007/BF03175362
- Costa H, Gaston JR, Lara J, Martinez CO, Moriwaki C, Matioli G, et al. 2015. Cyclodextrin glycosyltransferase production by free cells of Bacillus circulans DF 9R in batch fermentation and by immobilized cells in a semi-continuous process. Bioprocess Biosyst. Eng. 38: 1055-1063. https://doi.org/10.1007/s00449-014-1347-6
-
Rajput KN, Patel KC, Trivedi UB. 2016.
${\beta}$ -cyclodextrin production by cyclodextrin glucanotransferase from an alkaliphile Microbacterium terrae KNR 9 using different starch substrates. Biotechnol. Res. Int. 2016: 1-7. https://doi.org/10.1155/2016/7830182 -
Schoffer JDN, Klein MP, Rodrigues RC, Hertz PF. 2013. Continuous production of
${\beta}$ -cyclodextrin from starch by highly stable cyclodextrin glycosyltransferase immobilized on chitosan. Carbohydr. Polym. 98: 1311-1316. https://doi.org/10.1016/j.carbpol.2013.07.044 - Ibrahim ASS, Al-Salamah AA, El-Toni AM, El-Tayeb MA, Elbadawi YB. 2014. Cyclodextrin glucanotransferase immobilization onto functionalized magnetic double mesoporous core-shell silica nanospheres. Electron. J. Biotechnol. 17: 55-64. https://doi.org/10.1016/j.ejbt.2014.01.001
- Matte CR, Nunes MR, Benvenutti EV, Schöffer J da N, Ayub MAZ, Hertz PF. 2012. Characterization of cyclodextrin glycosyltransferase immobilized on silica microspheres via aminopropyltrimethoxysilane as a "spacer arm." J. Mol. Catal. B Enzym. 78: 51-56. https://doi.org/10.1016/j.molcatb.2012.01.003
- Kim MH, Sohn CB, Oh TK. 1998. Cloning and sequencing of a cyclodextrin glycosyltransferase gene from Brevibacillus brevis CD162 and its expression in Escherichia coli. FEMS Microbiol. Lett. 164: 411-418. https://doi.org/10.1111/j.1574-6968.1998.tb13117.x
- Tonkova A. 1998. Bacterial cyclodextrin glucanotransferase. Enzyme Microb. Technol. 22: 678-686. https://doi.org/10.1016/S0141-0229(97)00263-9
- Kang J, Liu L, Wu X, Sun Y, Liu Z. 2018. Effect of thyme essential oil against Bacillus cereus planktonic growth and biofilm formation. Appl. Microbiol. Biotechnol. 102: 10209-10218. https://doi.org/10.1007/s00253-018-9401-y
- Shi C, Zhang X, Guo N. 2018. The antimicrobial activities and action-mechanism of tea tree oil against food-borne bacteria in fresh cucumber juice. Microb. Pathog. 125: 262-271. https://doi.org/10.1016/j.micpath.2018.09.036
- Quendera AP, Barreto AS, Semedo-Lemsaddek T. 2018. Antimicrobial activity of essential oils against foodborne multidrugresistant enterococci and aeromonads in planktonic and biofilm state. Food Sci. Technol. Int. 25: 101-108. https://doi.org/10.1177/1082013218799027
- Radünz M, da Trindade MLM, Camargo TM, Radünz AL, Borges CD, Gandra EA, et al. 2019. Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum, L.) essential oil. Food Chem. 276: 180-186. https://doi.org/10.1016/j.foodchem.2018.09.173
- Celebioglu A, Yildiz ZI, Uyar T. 2018. Thymol/cyclodextrin inclusion complex nanofibrous webs: Enhanced water solubility, high thermal stability and antioxidant property of thymol. Food Res. Int. 106: 280-290. https://doi.org/10.1016/j.foodres.2017.12.062
- Abada MB, Hamdi SH, Gharib R, Messaoud C, Fourmentin S, Greige-Gerges H, et al. 2019. Post-harvest management control of Ectomyelois ceratoniae (Zeller) (Lepidoptera: Pyralidae): new insights through essential oil encapsulation in cyclodextrin. Pest Manag. Sci. 75: 2000-2008. https://doi.org/10.1002/ps.5315
- Gadisa E, Weldearegay G, Desta K, Tsegaye G, Hailu S, Jote K, et al. 2019. Combined antibacterial effect of essential oils from three most commonly used Ethiopian traditional medicinal plants on multidrug resistant bacteria. BMC Complement Altern. Med. 19: 24. https://doi.org/10.1186/s12906-019-2429-4
- Pandini JA, Pinto FGS, Scur MC, Santana CB, Costa WF, Temponi LG, et al. 2017. Chemical composition, antimicrobial and antioxidant potential of the essential oil of Guarea kunthiana A. Juss. Braz. J. Biol. 78: 53-60. https://doi.org/10.1590/1519-6984.04116
-
Herrera A, Rodriguez FJ, Bruna JE, Abarca RL, Galotto MJ, Guarda A, et al. 2019. Antifungal and physicochemical properties of inclusion complexes based on
${\beta}$ -cyclodextrin and essential oil derivatives. Food Res. Int. 121: 127-135. https://doi.org/10.1016/j.foodres.2019.03.026 -
Matshetshe KI, Parani S, Manki SM, Oluwafemi OS. 2018. Preparation, characterization and in vitro release study of
${\beta}$ -cyclodextrin/chitosan nanoparticles loaded Cinnamomum zeylanicum essential oil. Int. J. Biol. Macromol. 118: 676-682. https://doi.org/10.1016/j.ijbiomac.2018.06.125 -
Chen G, Liu B. 2016. Cellulose sulfate based film with slowrelease antimicrobial properties prepared by incorporation of mustard essential oil and
${\beta}$ -cyclodextrin. Food Hydrocoll. 55: 100-107. https://doi.org/10.1016/j.foodhyd.2015.11.009
피인용 문헌
- Active polyethylene films incorporated with β-cyclodextrin/ferula asafoetida extract inclusion complexes: Sustained release of bioactive agents vol.95, 2021, https://doi.org/10.1016/j.polymertesting.2021.107113