DOI QR코드

DOI QR Code

Mec1 Modulates Interhomolog Crossover and Interplays with Tel1 at Post Double-Strand Break Stages

  • Lee, Min-Su (Department of Life Sciences, Chung-Ang University) ;
  • Joo, Jung Whan (Department of Life Sciences, Chung-Ang University) ;
  • Choi, Hyungseok (Department of Life Sciences, Chung-Ang University) ;
  • Kang, Hyun Ah (Department of Life Sciences, Chung-Ang University) ;
  • Kim, Keunpil (Department of Life Sciences, Chung-Ang University)
  • Received : 2019.09.15
  • Accepted : 2019.12.01
  • Published : 2020.03.28

Abstract

During meiosis I, programmed DNA double-strand breaks (DSBs) occur to promote chromosome pairing and recombination between homologs. In Saccharomyces cerevisiae, Mec1 and Tel1, the orthologs of human ATR and ATM, respectively, regulate events upstream of the cell cycle checkpoint to initiate DNA repair. Tel1ATM and Mec1ATR are required for phosphorylating various meiotic proteins during recombination. This study aimed to investigate the role of Tel1ATM and Mec1ATR in meiotic prophase via physical analysis of recombination. Tel1ATM cooperated with Mec1ATR to mediate DSB-to-single end invasion transition, but negatively regulated DSB formation. Furthermore, Mec1ATR was required for the formation of interhomolog joint molecules from early prophase, thus establishing a recombination partner choice. Moreover, Mec1ATR specifically promoted crossover-fated DSB repair. Together, these results suggest that Tel1ATM and Mec1ATR function redundantly or independently in all post-DSB stages.

Keywords

References

  1. Kleckner N, Zhang L, Weiner B, Zickler D. 2011. In genome organization and function in the cell nucleus, Chapter 19, K. Rippe, ed. (Weinheim, Germany: Wiley-VCH).
  2. Kim KP, Weiner BM, Zhang L, Jordan A, Dekker J, Kleckner N. 2010. Sister cohesion and structural axis components mediate homolog bias of meiotic recombination. Cell 143: 924-937. https://doi.org/10.1016/j.cell.2010.11.015
  3. Sanchez-Moran E, Santos JL, Jones GH, Franklin FC. 2007. ASY1 mediates AtDMC1-dependent interhomolog recombination during meiosis in Arabidopsis. Genes Dev. 21: 2220-2233. https://doi.org/10.1101/gad.439007
  4. Lao JP, Hunter N. 2010. Trying to avoid your sister. PLoS Biol. 8: e1000519 https://doi.org/10.1371/journal.pbio.1000519
  5. Keeney S, Giroux C, Kleckner N. 1997. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88: 375-384. https://doi.org/10.1016/S0092-8674(00)81876-0
  6. Keeney S. 2001. Mechanism and control of meiotic recombination initiation. Curr. Top. Dev. Biol. 52: 1-53. https://doi.org/10.1016/S0070-2153(01)52008-6
  7. Neale MJ, Pan J, Keeney S. 2005. Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436: 1053-1057. https://doi.org/10.1038/nature03872
  8. Murakami H, Keeney S. 2008. Regulating the formation of DNA double-strand breaks in meiosis. Genes Dev. 22: 286-292. https://doi.org/10.1101/gad.1642308
  9. Cannavo E, Cejka P. 2014. Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature 514: 122-125. https://doi.org/10.1038/nature13771
  10. Garcia V, Phelps SE, Gray S, Neale MJ. 2011. Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature 479: 241-244. https://doi.org/10.1038/nature10515
  11. Ribeiro J, Abby E, Livera G, Martini E. 2016. RPA homologs and ssDNA processing during meiotic recombination. Chromosoma 125: 265-276. https://doi.org/10.1007/s00412-015-0552-7
  12. Sasanuma H, Tawaramoto MS, Lao JP, Hosaka H, Sanda E, Suzuki M, et al. 2013. A new protein complex promoting the assembly of Rad51 filaments. Nat. Commun. 4: 1676. https://doi.org/10.1038/ncomms2678
  13. Hong S, Kim KP 2013. Shu1 promotes homolog bias of meiotic recombination in Saccharomyces cerevisiae. Mol. Cells 36: 446-454. https://doi.org/10.1007/s10059-013-0215-6
  14. Borner GV, Kleckner N, Hunter N. 2004. Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117: 29-45. https://doi.org/10.1016/S0092-8674(04)00292-2
  15. Grushcow JM, Holzen TM, Park KJ, Weinert T, Lichten M, Bishop DK. 1999. Saccharomyces cerevisiae checkpoint genes MEC1, RAD17 and RAD24 are required for normal meiotic recombination partner choice. Genetics 153: 607-620. https://doi.org/10.1093/genetics/153.2.607
  16. Thompson D, Stahl F 1999. Genetic control of recombination partner preference in yeast meiosis: isolation and characterization of mutants elevated for meiotic unequal sister-chromatid recombination. Genetics 153: 621-641. https://doi.org/10.1093/genetics/153.2.621
  17. Carballo JA, Johnson AL, Sedgwick SG, Cha RS. 2008. Phosphorylation of the axial element protein Hop1 by Mec1/Tel1 ensures meiotic interhomolog recombination. Cell 132: 758-770. https://doi.org/10.1016/j.cell.2008.01.035
  18. Traven A, Heierhorst J. 2005. SQ/TQ cluster domains: concentrated ATM/ATR kinase phosphorylation site regions in DNA-damage-response proteins. Bioessays 27: 397-407. https://doi.org/10.1002/bies.20204
  19. Chuang CN, Cheng YH, Wang TF. 2012. Mek1 stabilizes Hop1-Thr318 phosphorylation to promote interhomolog recombination and checkpoint responses during yeast meiosis. Nucleic Acids Res. 40: 11416-11427. https://doi.org/10.1093/nar/gks920
  20. Navadgi-Patil VM, Burgers PM. 2009. A tale of two tails: activation of DNA damage checkpoint kinase Mec1/ATR by the 9-1-1 clamp and by Dpb11/TopBP1. DNA Repair (Amst) 8: 996-1003. https://doi.org/10.1016/j.dnarep.2009.03.011
  21. Falck J, Coates J, Jackson SP 2005. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434: 605-611 https://doi.org/10.1038/nature03442
  22. Usui T, Ogawa H, Petrini JH. 2001. A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol. Cell 7: 1255-1266. https://doi.org/10.1016/S1097-2765(01)00270-2
  23. You Z, Chahwan C, Bailis J, Hunter T, Russell P. 2005. ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol. Cell Biol. 25: 5363-5379. https://doi.org/10.1128/MCB.25.13.5363-5379.2005
  24. Melo J, Toczyski D. 2002. A unified view of the DNA-damage checkpoint. Curr. Opin. Cell Biol. 14: 237-245. https://doi.org/10.1016/S0955-0674(02)00312-5
  25. Choi HJ, Kim YH. 2018. Simultaneous and sequential integration by Cre/loxP site-specific recombination in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 28: 826-830. https://doi.org/10.4014/jmb.1802.02004
  26. Jing H, Liu H, Zhang L, Gao J, Song H, Tan X. 2018. Ethanol induces autophagy regulated by mitochondrial ROS in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 28: 1982-1991. https://doi.org/10.4014/jmb.1806.06014
  27. Hunter N, Kleckner N. 2001. The single-end invasion: an asymmetric intermediate at the double-strand break to double-Holliday junction transition of meiotic recombination. Cell 106: 59-70. https://doi.org/10.1016/S0092-8674(01)00430-5
  28. Hong S, Sung Y, Yu M, Lee M, Kleckner N, Kim KP. 2013. The logic and mechanism of homologous recombination partner choice. Mol. Cell 51: 440-453. https://doi.org/10.1016/j.molcel.2013.08.008
  29. Lee MS, Yoon SW, Kim KP. 2015. Mitotic cohesin subunit Mcd1 regulates the progression of meiotic recombination in budding yeast. J. Microbiol. Biotechnol. 25: 598-605. https://doi.org/10.4014/jmb.1501.01081
  30. Lange J, Pan J, Cole F, Thelen MP, Jasin M, Keeney S. 2011. ATM controls meiotic double-strand-break formation. Nature 479: 237-240 https://doi.org/10.1038/nature10508
  31. Garcia V, Gray S, Allison RM, Cooper TJ, Neale MJ. 2015. Tel1(ATM)-mediated interference suppresses clustered meiotic double-strand-break formation. Nature 520: 114-118. https://doi.org/10.1038/nature13993
  32. Zhang L, Kim KP, Kleckner NE, Storlazzi A 2011. Meiotic double-strand breaks occur once per pair of (sister) chromatids and, via Mec1/ATR and Tel1/ATM, once per quartet of chromatids. Proc. Natl. Acad. Sci. USA 108: 20036-20041. https://doi.org/10.1073/pnas.1117937108
  33. Kato R, Ogawa 1994. An essential gene, ESR1, is required for mitotic cell growth, DNA repair and meiotic recombination in Saccharomyces cerevisiae. Nucleic Acids Res. 22: 3104-3012. https://doi.org/10.1093/nar/22.15.3104
  34. Carr AM. 1997. Control of cell cycle arrest by the Mec1sc/Rad3sp DNA structure checkpoint pathway. Curr. Opin. Genet. Dev. 7: 93-98. https://doi.org/10.1016/S0959-437X(97)80115-3
  35. Zhao X, Muller EG, Rothstein R 1998. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol. Cell 2: 329-340. https://doi.org/10.1016/S1097-2765(00)80277-4
  36. Grenon M, Magill CP, Lowndes NF, Jackson SP. 2006. Double-strand breaks trigger MRX- and Mec1-dependent, but Tel1-independent, checkpoint activation. FEMS Yeast Res. 6: 836-847. https://doi.org/10.1111/j.1567-1364.2006.00076.x
  37. Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shioh Y. 2003. Requirement of the MRN complex for ATM activation by DNA damage. EMBO J. 22: 5612-5621. https://doi.org/10.1093/emboj/cdg541
  38. Mohibullah N, Keeney S. 2017. Numerical and spatial patterning of yeast meiotic DNA breaks by Tel1. Genome Res. 27: 278-288. https://doi.org/10.1101/gr.213587.116
  39. Beyer T, Weinert T. 2014. Mec1 and Tel1: an arresting dance of resection. EMBO J. 33: 176-178. https://doi.org/10.1002/embj.201387440
  40. Lee BH, Amon A. 2003. Role of Polo-like kinase CDC5 in programming meiosis I chromosome segregation. Science 300: 482-486. https://doi.org/10.1126/science.1081846
  41. Jin H, Guacci, V, Yu HG. 2009. Pds5 is required for homologue pairing and inhibits synapsis of sister chromatids during yeast meiosis. J. Cell Biol. 186: 713-725. https://doi.org/10.1083/jcb.200810107
  42. Yoon SW, Lee MS, Xaver M, Zhang L, Hong SG, Kong YJ, et al. 2016. Meiotic prophase roles of Rec8 in crossover recombination and chromosome structure. Nucleic Acids Res. 44: 9296-9314. https://doi.org/10.1093/nar/gkw682
  43. Hong S, Joo JH, Yun H, Kim K. 2019. The nature of meiotic chromosome dynamics and recombination in budding yeast. J. Microbiol. 57: 221-231. https://doi.org/10.1007/s12275-019-8541-9

Cited by

  1. DNA damage checkpoint and repair: From the budding yeast Saccharomyces cerevisiae to the pathogenic fungus Candida albicans vol.19, 2021, https://doi.org/10.1016/j.csbj.2021.11.033