References
- Compant S, Duffy B, Nowak J, Clement C, Barka EA. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71: 4951-4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005
- Hirooka T, Ishii H. 2013. Chemical control of plant diseases. J. General Plant Pathol. 79: 390-401. https://doi.org/10.1007/s10327-013-0470-6
- Fickers P. 2012. Antibiotic compounds from Bacillus: Why are they so Amazing? Am. J. Biochem. Biotechnol. 8: 38-43. https://doi.org/10.3844/ajbbsp.2012.38.43
- Johnson BA, Anker H, Meleney FL. 1945. Bacitracin: A New antibiotic produced by a member of the B. Subtilis Group. Science 102: 376-377. https://doi.org/10.1126/science.102.2650.376
- Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, et al. 2007. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25: 1007-1014. https://doi.org/10.1038/nbt1325
- Belbahri L, Chenari Bouket A, Rekik I, Alenezi FN, Vallat A, Luptakova L, et al. 2017. Comparative genomics of Bacillus amyloliquefaciens strains reveals a core genome with traits for habitat adaptation and a secondary metabolites rich accessory genome. Front. Microbiol. 8: 1438. https://doi.org/10.3389/fmicb.2017.01438
- Xu BH, Lu YQ, Ye ZW, Zheng QW, Wei T, Lin JF, et al. 2018. Genomics-guided discovery and structure identification of cyclic lipopeptides from the Bacillus siamensis JFL15. PLoS One 13: e0202893. https://doi.org/10.1371/journal.pone.0202893
- Chen XH, Scholz R, Borriss M, Junge H, Mogel G, Kunz S, et al. 2009. Difficidin and bacilysin produced by plantassociated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J. Biotechnol. 140: 38-44. https://doi.org/10.1016/j.jbiotec.2008.10.015
- Schneider K, Chen XH, Vater J, Franke P, Nicholson G, Borriss R, et al. 2007. Macrolactin is the polyketide biosynthesis product of the pks2 cluster of Bacillus amyloliquefaciens FZB42. J. Nat. Prod. 70: 1417-1423. https://doi.org/10.1021/np070070k
- Schneider J, Taraz K, Budzikiewicz H, Deleu M, Thonart P, Jacques P. 1999. The structure of two fengycins from Bacillus subtilis S499. Z. Naturforsch. C. 54: 859-866. https://doi.org/10.1515/znc-1999-1102
- Peypoux F, Bonmatin JM, Labbe H, Grangemard I, Das BC. Ptak M, Wallach J, et al. 1994. [Ala4]surfactin, a novel isoform from Bacillus subtilis studied by mass and NMR spectroscopies. Eur. J. Biochem. 224: 89-96. https://doi.org/10.1111/j.1432-1033.1994.tb19998.x
- Cui LT, Liu HW, Cheng HC, Wang YN, Wang Q, Li QY, et al. 2019. Cloning and bioinformatics analysis of LanM gene in Bacillus amyloliquefaciens WS-8. Genomics Appl. Biol. 38: 644-649.
- Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10: 563-569. https://doi.org/10.1038/nmeth.2474
- Besemer J, Lomsadze A, Borodovsky M. 2001. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 29: 2607-2618. https://doi.org/10.1093/nar/29.12.2607
- Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D, Garrity G, et al. 2008. Toward an online repository of Standard Operating Procedures (SOPs) for (meta) genomic annotation. Omics 12: 137-141. https://doi.org/10.1089/omi.2008.0017
- Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9: 75. https://doi.org/10.1186/1471-2164-9-75
- Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, et al. 2015. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 43: W237-243. https://doi.org/10.1093/nar/gkv437
- Grant JR, StothardP. 2008. The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res. 36: W181-184. https://doi.org/10.1093/nar/gkn179
- Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 9: 357-359. https://doi.org/10.1038/nmeth.1923
- Frazee AC, Pertea G, Jaffe AE, Langmead B, Salzberg SL, Leek JT. 2015. Ballgown bridges the gap between transcriptome assembly and expression analysis. Nat. Biotechnol. 33: 243-246. https://doi.org/10.1038/nbt.3172
- Xin B, Zheng J, Xu Z, Li C, Ruan L, Peng D, et al. 2015. Three novel lantibiotics, ticins A1, A3, and A4, have extremely stable properties and are promising food biopreservatives. Appl. Environ. Microbiol. 81: 6964-6972. https://doi.org/10.1128/AEM.01851-15
- Xin B, Zheng J, Xu Z, Song X, Ruan L, Peng D, et al. 2015. The Bacillus cereus group is an excellent reservoir of novel lanthipeptides. Appl. Environ. Microbiol. 81: 1765-1774. https://doi.org/10.1128/AEM.03758-14
- Devillers J, Steiman R, Seigle-Murandi F. 1989. The usefulness of the agar-well diffusion method for assessing chemical toxicity to bacteria and fungi. Chemosphere 19: 1693-1700. https://doi.org/10.1016/0045-6535(89)90512-2
- Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, et al. 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4: 41. https://doi.org/10.1186/1471-2105-4-41
- Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, et al. 2006. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34: D354-357. https://doi.org/10.1093/nar/gkj102
- Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25: 25-29. https://doi.org/10.1038/75556
- Xie L, Miller LM, Chatterjee C, Averin O, Kelleher NL, van der Donk WA. 2004. Lacticin 481: in vitro reconstitution of lantibiotic synthetase activity. Science 303: 679-681. https://doi.org/10.1126/science.1092600
- Wang J, Ge X, Zhang L, Teng K, Zhong J. 2016. One-pot synthesis of class II lanthipeptide bovicin HJ50 via an engineered lanthipeptide synthetase. Sci. Rep. 6: 38630. https://doi.org/10.1038/srep38630
- Zhi Y, Wu Q, Xu Y. 2017. Genome and transcriptome analysis of surfactin biosynthesis in Bacillus amyloliquefaciens MT45. Sci. Rep. 7: 40976. https://doi.org/10.1038/srep40976
- Williamson B, Tudzynski B, Tudzynski P, Van Kan JAL. 2007. Botrytis cinerea: the cause of grey mould disease. Mol. Plant Pathol. 8: 561-580. https://doi.org/10.1111/j.1364-3703.2007.00417.x
- ten Have A, Mulder W, Visser J, van Kan JAL. 1998. The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol. Plant Microbe Interact. 11: 1009-1016. https://doi.org/10.1094/MPMI.1998.11.10.1009
- Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL. 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem. 34: 955-963. https://doi.org/10.1016/S0038-0717(02)00027-5
- Stein T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
- Beric T, Kojic M, Stankovic S, Topisirovic L, Degrassi G, Myers M, et al. 2012. Antimicrobial activity of Bacillus sp natural isolates and their potential use in the biocontrol of phytopathogenic bacteria. Food Technol. Biotechnol. 50: 25-31.
- Arrebola E, Jacobs R, Korsten L. 2010. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J. Appl. Microbiol. 108: 386-395. https://doi.org/10.1111/j.1365-2672.2009.04438.x
- Kim PI, Bai H, Bai D, Chae H, Chung S, Kim Y, et al. 2004. Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J. Appl. Microbiol. 97: 942-949. https://doi.org/10.1111/j.1365-2672.2004.02356.x
- Maget-Dana R, Thimon L, Peypoux F, Ptak M. 1992. Surfactin/iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie 74: 1047-1051. https://doi.org/10.1016/0300-9084(92)90002-V
Cited by
- Utilization of marigold (Tagetes erecta) flower fermentation wastewater as a fertilizer and its effect on microbial community structure in maize rhizosphere and non-rhizosphere soil vol.34, pp.1, 2020, https://doi.org/10.1080/13102818.2020.1781548
- Prebiotic, Probiotic, Antimicrobial, and Functional Food Applications of Bacillus amyloliquefaciens vol.68, pp.50, 2020, https://doi.org/10.1021/acs.jafc.0c06396
- Genomics-guided isolation and identification of active secondary metabolites of Bacillus velezensis BA-26 vol.35, pp.1, 2020, https://doi.org/10.1080/13102818.2021.1934540