References
- Falkowski PG, Fenchel T, Delong EF. 2008. The microbial engines that drive Earth's biogeochemical cycles. Science 320: 1034-1039. https://doi.org/10.1126/science.1153213
- Lee YS, Park W. 2019. Enhanced calcium carbonate-biofilm complex formation by alkali-generating Lysinibacillus boronitolerans YS11 and alkaliphilic Bacillus sp. AK13. AMB Express. 9: 49. https://doi.org/10.1186/s13568-019-0773-x
- De Muynck W, De Belie N, Verstraete W. 2010. Microbial carbonate precipitation in construction materials: a review. Ecol. Eng. 36: 118-136. https://doi.org/10.1016/j.ecoleng.2009.02.006
- Banks ED, Taylor NM, Gulley J, Lubbers BR, Giarrizzo JG, Bullen HA, et al. 2010. Bacterial calcium carbonate precipitation in cave environments: a function of calcium homeostasis. Geomicrobiol. J. 27: 444-454. https://doi.org/10.1080/01490450903485136
-
Gat D, Ronen Z, Tsesarsky M. 2016. Soil bacteria population dynamics following stimulation for ureolytic microbialinduced
$CaCO_3$ precipitation. Environ. Sci. Technol. 50: 616-624. https://doi.org/10.1021/acs.est.5b04033 - Zhu T, Dittrich M. 2016. Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Front. Bioeng. Biotechnol. 4: 4. https://doi.org/10.3389/fbioe.2016.00004
- Ramos-Cormenzana A, del Moral A, Rivadeneyra MA, Ferrer MR, Delgado R. 1994. Precipitation of calcium carbonate by Vibrio spp. from an inland saltern. FEMS Microbiol. Ecol. 13: 197-204. https://doi.org/10.1111/j.1574-6941.1994.tb00066.x
- Hammes F, Verstraete W. 2002. Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev. Environ. Sci. Bio. 1: 3-7. https://doi.org/10.1023/A:1015135629155
- Rodriguez-Navarro C, Rodriguez-Gallego M, Chekroun KB, Gonzalez-Munoz MT. 2003. Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Appl. Environ. Microbiol. 69: 2182-2193. https://doi.org/10.1128/AEM.69.4.2182-2193.2003
- Castanier S, Le Metayer-Levrel G, Perthuisot JP. 1999. Ca-carbonates precipitation and limestone genesis - the microbiogeologist point of view. Sediment. Geol. 126: 9-23. https://doi.org/10.1016/S0037-0738(99)00028-7
- Dittrich M, Kurz P, Wehrli B. 2004. The role of autotrophic picocyanobacteria in calcite precipitation in an oligotrophic lake. Geomicrobiol. J. 21: 45-53. https://doi.org/10.1080/01490450490253455
- Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT. 2009. Processes of carbonate precipitation in modern microbial mats. Earth-Sci. Rev. 96: 141-162. https://doi.org/10.1016/j.earscirev.2008.10.005
- Hamdan N, Kavazanjian E, Rittmann BE, Karatas I. 2017. Carbonate mineral precipitation for soil improvement through microbial denitrification. Geomicrobiol. J. 34: 139-146. https://doi.org/10.1080/01490451.2016.1154117
- Jeong JH, Jo YS, Park CS, Kang CH, So JS. 2017. Biocementation of concrete pavements using microbially induced calcite precipitation. J. Microbiol. Biotechnol. 27: 1331-1335. https://doi.org/10.4014/jmb.1701.01041
- Park SJ, Park JM, Kim W, Ghim SY. 2012. Application of Bacillus subtilis 168 as a multifunctional agent for improvement of the durability of cement mortar. J. Microbiol. Biotechnol. 22: 1568-1574. https://doi.org/10.4014/jmb.1202.02047
- Bundeleva IA, Shirokova LS, Benezeth P, Pokrovsky OS, Kompantseva EI, Balor S. 2012. Calcium carbonate precipitation by anoxygenic phototrophic bacteria. Chem. Geol. 291: 116-131. https://doi.org/10.1016/j.chemgeo.2011.10.003
- Zhang W, Ju Y, Zong Y, Qi H, Zhao K. 2018. In situ real-time study on dynamics of microbially induced calcium carbonate precipitation at a single-cell level. Environ. Sci. Technol. 52: 9266-9276. https://doi.org/10.1021/acs.est.8b02660
- Ghosh T, Bhaduri S, Montemagno C, Kumar A. 2019. Sporosarcina pasteurii can form nanoscale calcium carbonate crystals on cell surface. PLoS One 14(1): e0210339 https://doi.org/10.1371/journal.pone.0210339
- Kim HJ, Shin B, Lee YS, Park W. 2017. Modulation of calcium carbonate precipitation by exopolysaccharide in Bacillus sp. JH7. Appl. Microbiol. Biotechnol. 101: 6551-6561. https://doi.org/10.1007/s00253-017-8372-8
-
Tourney J, Ngwenya BT. 2009. Bacterial extracellular polymeric substances (EPS) mediate
$CaCO_3$ morphology and polymorphism. Chem. Geol. 262: 138-146. https://doi.org/10.1016/j.chemgeo.2009.01.006 - Reddy MS. 2013. Biomineralization of calcium carbonates and their engineered applications: a review. Front. Microbiol. 4: 314. https://doi.org/10.3389/fmicb.2013.00314
- Chaturvedi S, Chandra R, Rai V. 2006. Isolation and characterization of Phragmites australis (L.) rhizosphere bacteria from contaminated site for bioremediation of colored distillery effluent. Ecol. Eng. 27: 202-207. https://doi.org/10.1016/j.ecoleng.2006.02.008
- Simon MA, Bonner JS, Page CA, Townsend RT, Mueller DC, Fuller CB, et al. 2004. Evaluation of two commercial bioaugmentation products for enhanced removal of petroleum from a wetland. Ecol. Eng. 22: 263-277. https://doi.org/10.1016/j.ecoleng.2004.06.005
- Al-Thawadi SM. 2011. Ureolytic bacteria and calcium carbonate formation as a mechanism of strength enhancement of sand. J. Adv. Sci. Eng. Res. 1: 98-114.
- Jonkers HM, Schlangen E. 2007. Self-healing of cracked concrete: a bacterial approach. Available from https://framcos.org/FraMCoS-6.php#gsc.tab=0. Accessed July. 20, 2019.
- De Belie N, Wang J, Bundur ZB, Paine K. 2017. Bacteria based concrete. pp. 531-567. In Pacheco-Torgal F, Melchers R, De Belie N, Shi X, Van Tittelboom K, Saez Perez A (eds). Eco-efficient Repair and Rehabilitation of Concrete Infrastructures, 1st Ed. Woodhead publishing, Sawston, Cambridge.
- Gupta S, Dai Pang S, Kua HW. 2017. Autonomous healing in concrete by bio-based healing agents-A review. Constr. Build. Mater. 146: 419-428. https://doi.org/10.1016/j.conbuildmat.2017.04.111
- Wang J, Ersan YC, Boon N, De Belie N. 2016. Application of microorganisms in concrete: a promising sustainable strategy to improve concrete durability. Appl. Microbiol. Biotechnol. 100: 2993-3007. https://doi.org/10.1007/s00253-016-7370-6
- Wong LS. 2015. Microbial cementation of ureolytic bacteria from the genus Bacillus: a review of the bacterial application on cement-based materials for cleaner production. J. Clean Prod. 93: 5-17. https://doi.org/10.1016/j.jclepro.2015.01.019
- Kim HJ, Eom HJ, Park C, Jung J, Shin B, Kim W, et al. 2016. Calcium carbonate precipitation by Bacillus and Sporosarcina strains isolated from concrete and analysis of the bacterial community of concrete. J. Microbiol. Biotechnol. 26: 540-548. https://doi.org/10.4014/jmb.1511.11008
- Gordon R, Haynes W, Pang C, Smith N. 1973. The genus Bacillus. Agriculture handbook. 427th Ed. Agricultural Research Service, US. Department of Agriculture, Washington, D.C.
- Jonkers HM, Thijssen A, Muyzer G, Copuroglu O, Schlangen E. 2010. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 36: 230-235. https://doi.org/10.1016/j.ecoleng.2008.12.036
- Lee YS, Park W. 2018. Current challenges and future directions for bacterial self-healing concrete. Appl. Microbiol. Biotechnol. 102: 3059-3070. https://doi.org/10.1007/s00253-018-8830-y
- Xu J, Yao W, Jiang Z. 2013. Non-ureolytic bacterial carbonate precipitation as a surface treatment strategy on cementitious materials. J. Mater. Civil Eng. 26: 983-991. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000906
- Neville AM. 2010. Properties of concrete, pp. 1646-1650. 5th Ed. Pearson Education, Wanstead, London.
- Ow MC, Perwez T, Kushner SR. 2003. RNase G of Escherichia coli exhibits only limited functional overlap with its essential homologue, RNase E. Mol. Microbiol. 49: 607-622. https://doi.org/10.1046/j.1365-2958.2003.03587.x
- Chaurasia L, Bisht V, Singh L, Singh LP, Gupta S. 2019. A novel approach of biomineralization for improving micro and macro-properties of concrete. Constr. Build. Mater. 195: 340-351. https://doi.org/10.1016/j.conbuildmat.2018.11.031
- Lee YS, Kim HJ, Park W. 2017. Non-ureolytic calcium carbonate precipitation by Lysinibacillus sp. YS11 isolated from the rhizosphere of Miscanthus sacchariflorus. J. Microbiol. 55: 440-447. https://doi.org/10.1007/s12275-017-7086-z
-
Krulwich TA, Ito M, Guffanti AA. 2001. The
$Na^+$ -dependence of alkaliphily in Bacillus. BBA-Bioenergetics 1505: 158-168. https://doi.org/10.1016/S0005-2728(00)00285-1 - Markkula A, Lindstrom M, Johansson P, Bjorkroth J, Korkeala H. 2012. Roles of four putative DEAD-box RNA helicase genes in growth of Listeria monocytogenes EGD-e under heat, pH, osmotic, ethanol, and oxidative stress conditions. Appl. Environ. Microbiol. 78: 6875-6882. https://doi.org/10.1128/AEM.01526-12
- OW MC, Perwez, T, Kushner SR. 2003. RNase G of Escherichia coli exhibits only limited functional overlap with its essential homologue, RNase E. Mol. Microbiol. 49: 607-622. https://doi.org/10.1046/j.1365-2958.2003.03587.x
- Mishra V. 2015. Modelling of the batch biosorption system: study on exchange of protons with cell wall-bound mineral ions. Environ. Technol. 36: 3194-3200. https://doi.org/10.1080/09593330.2015.1055822
- Thomas KJ, Rice CV. 2014. Revised model of calcium and magnesium binding to the bacterial cell wall. Biometals 27: 1361-1370. https://doi.org/10.1007/s10534-014-9797-5
- Pepper RE, Costilow RN. 1964. Glucose catabolism by Bacillus popilliae and Bacillus lentimorbus. J. Bacteriol. 87: 303-310. https://doi.org/10.1128/JB.87.2.303-310.1964
- Zhang Y, Guo H, Cheng X. 2014. Influences of calcium sources on microbially induced carbonate precipitation in porous media. Mater. Res. Innov. 18: S2-79.
Cited by
- Agricultural by-products and oyster shell as alternative nutrient sources for microbial sealing of early age cracks in mortar vol.11, pp.1, 2020, https://doi.org/10.1186/s13568-020-01166-5