References
- Thomson RH. 1971. Natural Occurring Quinones. Academic Press. pp. 367. 2nd Ed. New York.
- Bien HS, Stawitz J, Wunderlich K. 2005. Anthraquinone Dyes and Intermediates. Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.
- Gordon PF, Gregory P.1987. Anthraquinone Dyes. Organic Chemistry in Colour. Springer Study Edition. Springer, Berlin, Heidelberg.
- Agarwal S, Singh SS, Verma S, Kumar S. 2000. Antifungal activity of anthraquinone derivatives from Rheum emodi. J. Ethnopharmacol. 72: 43-46. https://doi.org/10.1016/S0378-8741(00)00195-1
- Anton R, Haag-Berrurier M. 1980. Therapeutic use of natural anthraquinone for other than laxaive actions. Pharmacol. 20(Suppl. 1): 104-112. https://doi.org/10.1159/000137404
- Demirezer LO. 1994. Concentrations of anthraquinone glycosides of Rumex crispus during different vegetation stages. Z. Naturforsch. 49c: 404-406. https://doi.org/10.1515/znc-1994-7-802
- Kemegne GA, Mkounga P, Ngang JJE, Kamdem SLS, Nkengfack AE. 2017. Antimicrobial structure activity relationship of five anthraquinones of emodine type isolated from Vismia laurentii. BMC Microbiol. 17(41).
- Nelemas FA. 1976. Clinical and toxicological aspects of anthraquinone laxatives. Pharmacol. 14 (suppl.1): 73-77. https://doi.org/10.1159/000136687
- Semple SJ, Pyke SM, Reynolds GD, Flower RL. 2001. In vitro antiviral activity of the anthraquinone chrysophanic acid against poliovirus. Antivir. Res. 49: 169-178. https://doi.org/10.1016/S0166-3542(01)00125-5
- Yen GC, Duh PD, Chuang DY. 2000. Antioxidant activity of anthraquinones and anthrone. Food Chem. 70: 437-441. https://doi.org/10.1016/S0308-8146(00)00108-4
- Lown JW. 1993. Anthracycline and anthraquinone anticancer agents: current status and recent developments. Pharmacol. Ther. 60: 185-214. https://doi.org/10.1016/0163-7258(93)90006-Y
- Huang Q, Lu G, Shen HM, Chung MCM, Choon NO. 2007. Anti-cancer properties of anthraquinones from rhubarb. Med. Res. Rev. 27: 609-630. https://doi.org/10.1002/med.20094
- Jia X, Iwanowycz S, Wang J, Saaoud F, Yu F, Wang Y, et al. 2014. Emodin attenuates systemic and liver inflammation in hyperlipidemic mice administrated with lipopolysaccharides. Exp. Biol. Med. 239: 1025-1035. https://doi.org/10.1177/1535370214530247
- Chiang JH, Yang JS, Ma CY, Yang MD, Huang HY, Hsia TC, et al. 2011. Danthron, an anthraquinone derivative, induces DNA damage and caspase cascades-mediated apoptosis in SNU-1 Human gastric cancer cells through mitochondrial permeability transition pores and bax-triggered pathways. Chem. Res. Toxicol. 24: 20-29. https://doi.org/10.1021/tx100248s
-
Lievremont M, Potus J, Guillou B. 1982. Use of Alirazin red S for histochemical staining of
$ca^{2+}$ in the mouse; some parameters of the chemical reaction in vitro. Acta Anat. 114: 268-280. https://doi.org/10.1159/000145596 - Derksen GCH, Niederlander HAG, van Beek TA. 2002. Analysis of anthraquinones in Rubia tinctorum L. by liquid chromatography coupled with diode-array uv and mass spectrometric detection. J. Chromatogr. A. 978 (1-2): 119-127. https://doi.org/10.1016/S0021-9673(02)01412-7
- DeLiberto ST, Werner SJ. 2016. Review of anthraquinone applications for pest management and agricultural crop protection. Pest Manag. Sci. 72: 1813-1825. https://doi.org/10.1002/ps.4330
- Perchellet EM, Magill MJ, Huang X, Dalke DM, Hua DH, Perchellet JP. 2000. 1,4-anthraquinone: an anticancer drug that blocks nucleoside transport, inhibits macromolecule synthesis, induces DNA fragmentation, and decreases the growth and viability of L1210 leukemic cells in the same nanomolar range as daunorubicin in vitro. Anti-Cancer Drugs. 11: 339-352. https://doi.org/10.1097/00001813-200006000-00004
- Sakulpanich A, Gritsanapan W. 2009. Detemination of anthraquinone glycoside content in Cassia fistula leaf extracts for alternative source of laxative drug. Int. J. Biomed. Pharmaceut. Sci. 3: 42-45.
- Strobel T, Al-Dilaimi A, Blom J, Gessner A, Kalinowski J, Luzhetska M, et al. 2012. Complete genome sequence of Saccharothrix espanaensis DSM 44229T and comparison to the other completely sequenced Pseudonocardiaceae. BMC Genomics. 13: 465. https://doi.org/10.1186/1471-2164-13-465
- Strobel T, Schmidt Y, Linnenbrink V, Luzhetskyy A, Luzhetska M, Taguchi T, et al. 2013. Tracking down biotransformation to the genetic level: Identification of a highly flexibleglycosyltransferase from Saccharothrix espanaensis. Appl. Environ. Microbiol. 79: 5224-5232. https://doi.org/10.1128/AEM.01652-13
- Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640-6645. https://doi.org/10.1073/pnas.120163297
- Pandey RP, Parajuli P, Chu LL, Darsandhari S, Sohng JK. 2015. Biosynthesis of amino deoxy-sugar-conjugated flavonol glycosides by engineered Escherichia coli. Biochem. Eng. J. 101: 191-199. https://doi.org/10.1016/j.bej.2015.05.017
- Simkhada D, Lee HC, Sohng JK. 2010. Genetic engineering approach for the production of rhamnosyl and allosyl flavonoids from Escherichia coli. Biotechnol. Bioeng. 107: 154-162. https://doi.org/10.1002/bit.22782
- Al-Otaibi J S, Spittle PT, G ogary E TM. 2016. Interaction of anthraquinone anti-cancer drugs with DNA; experimental and computational quantum chemical study. J. Mol.Struct. 1127: 751-760. https://doi.org/10.1016/j.molstruc.2016.08.007
- Anand N, Upadhyaya K, Ajay A, Mahar R, Shukla SK, Kumar B, Tripathi RP. 2013. A Strategy for the Synthesis of Anthraquinone-Based Aryl-C-glycosides. J. Org. Chem. 78: 4685-4696. https://doi.org/10.1021/jo302589t
- Wang Z, Ma P, Xu L, He C, Peng Y, Xiao P. 2013. Evaluation of the content variation of anthraquinone glycosides in rhubarb by UPLC-PDA. Chem. Cent. J. 7(1): 170. https://doi.org/10.1186/1752-153X-7-170
- Pandey RP, Parajuli P, Koffas MAG, Sohng JK. 2016. Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology. Biotechnol. Adv. 34: 634-662. https://doi.org/10.1016/j.biotechadv.2016.02.012
Cited by
- Novel dTDP-l-Rhamnose Synthetic Enzymes (RmlABCD) From Saccharothrix syringae CGMCC 4.1716 for One-Pot Four-Enzyme Synthesis of dTDP-l-Rhamnose vol.12, 2021, https://doi.org/10.3389/fmicb.2021.772839