DOI QR코드

DOI QR Code

Biosynthesis of Rhamnosylated Anthraquinones in Escherichia coli

  • Nguyen, Trang Thi Huyen (Department of Life Science and Biochemical Engineering, Sun Moon University) ;
  • Shin, Hee Jeong (Department of Life Science and Biochemical Engineering, Sun Moon University) ;
  • Pandey, Ramesh Prasad (Department of Life Science and Biochemical Engineering, Sun Moon University) ;
  • Jung, Hye Jin (Department of Life Science and Biochemical Engineering, Sun Moon University) ;
  • Liou, Kwangkyoung (Department of Life Science and Biochemical Engineering, Sun Moon University) ;
  • Sohng, Jae Kyung (Department of Life Science and Biochemical Engineering, Sun Moon University)
  • Received : 2019.11.21
  • Accepted : 2019.12.17
  • Published : 2020.03.28

Abstract

Rhamnose is a naturally occurring deoxysugar present as a glycogenic component of plant and microbial natural products. A recombinant mutant Escherichia coli strain was developed by overexpressing genes involved in the TDP-ʟ-rhamnose biosynthesis pathway of different bacterial strains and Saccharothrix espanaensis rhamnosyl transferase to conjugate intrinsic cytosolic TDP-ʟ-rhamnose with anthraquinones supplemented exogenously. Among the five anthraquinones (alizarin, emodin, chrysazin, anthrarufin, and quinizarin) tested, quinizarin was biotransformed into a rhamoside derivative with the highest conversion ratio by whole cells of engineered E. coli. The quinizarin glycoside was identified by various chromatographic and spectroscopic analyses. The anti-proliferative property of the newly synthesized rhamnoside, quinizarin-4-O-α-ʟ-rhamnoside, was assayed in various cancer cells.

Keywords

References

  1. Thomson RH. 1971. Natural Occurring Quinones. Academic Press. pp. 367. 2nd Ed. New York.
  2. Bien HS, Stawitz J, Wunderlich K. 2005. Anthraquinone Dyes and Intermediates. Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.
  3. Gordon PF, Gregory P.1987. Anthraquinone Dyes. Organic Chemistry in Colour. Springer Study Edition. Springer, Berlin, Heidelberg.
  4. Agarwal S, Singh SS, Verma S, Kumar S. 2000. Antifungal activity of anthraquinone derivatives from Rheum emodi. J. Ethnopharmacol. 72: 43-46. https://doi.org/10.1016/S0378-8741(00)00195-1
  5. Anton R, Haag-Berrurier M. 1980. Therapeutic use of natural anthraquinone for other than laxaive actions. Pharmacol. 20(Suppl. 1): 104-112. https://doi.org/10.1159/000137404
  6. Demirezer LO. 1994. Concentrations of anthraquinone glycosides of Rumex crispus during different vegetation stages. Z. Naturforsch. 49c: 404-406. https://doi.org/10.1515/znc-1994-7-802
  7. Kemegne GA, Mkounga P, Ngang JJE, Kamdem SLS, Nkengfack AE. 2017. Antimicrobial structure activity relationship of five anthraquinones of emodine type isolated from Vismia laurentii. BMC Microbiol. 17(41).
  8. Nelemas FA. 1976. Clinical and toxicological aspects of anthraquinone laxatives. Pharmacol. 14 (suppl.1): 73-77. https://doi.org/10.1159/000136687
  9. Semple SJ, Pyke SM, Reynolds GD, Flower RL. 2001. In vitro antiviral activity of the anthraquinone chrysophanic acid against poliovirus. Antivir. Res. 49: 169-178. https://doi.org/10.1016/S0166-3542(01)00125-5
  10. Yen GC, Duh PD, Chuang DY. 2000. Antioxidant activity of anthraquinones and anthrone. Food Chem. 70: 437-441. https://doi.org/10.1016/S0308-8146(00)00108-4
  11. Lown JW. 1993. Anthracycline and anthraquinone anticancer agents: current status and recent developments. Pharmacol. Ther. 60: 185-214. https://doi.org/10.1016/0163-7258(93)90006-Y
  12. Huang Q, Lu G, Shen HM, Chung MCM, Choon NO. 2007. Anti-cancer properties of anthraquinones from rhubarb. Med. Res. Rev. 27: 609-630. https://doi.org/10.1002/med.20094
  13. Jia X, Iwanowycz S, Wang J, Saaoud F, Yu F, Wang Y, et al. 2014. Emodin attenuates systemic and liver inflammation in hyperlipidemic mice administrated with lipopolysaccharides. Exp. Biol. Med. 239: 1025-1035. https://doi.org/10.1177/1535370214530247
  14. Chiang JH, Yang JS, Ma CY, Yang MD, Huang HY, Hsia TC, et al. 2011. Danthron, an anthraquinone derivative, induces DNA damage and caspase cascades-mediated apoptosis in SNU-1 Human gastric cancer cells through mitochondrial permeability transition pores and bax-triggered pathways. Chem. Res. Toxicol. 24: 20-29. https://doi.org/10.1021/tx100248s
  15. Lievremont M, Potus J, Guillou B. 1982. Use of Alirazin red S for histochemical staining of $ca^{2+}$ in the mouse; some parameters of the chemical reaction in vitro. Acta Anat. 114: 268-280. https://doi.org/10.1159/000145596
  16. Derksen GCH, Niederlander HAG, van Beek TA. 2002. Analysis of anthraquinones in Rubia tinctorum L. by liquid chromatography coupled with diode-array uv and mass spectrometric detection. J. Chromatogr. A. 978 (1-2): 119-127. https://doi.org/10.1016/S0021-9673(02)01412-7
  17. DeLiberto ST, Werner SJ. 2016. Review of anthraquinone applications for pest management and agricultural crop protection. Pest Manag. Sci. 72: 1813-1825. https://doi.org/10.1002/ps.4330
  18. Perchellet EM, Magill MJ, Huang X, Dalke DM, Hua DH, Perchellet JP. 2000. 1,4-anthraquinone: an anticancer drug that blocks nucleoside transport, inhibits macromolecule synthesis, induces DNA fragmentation, and decreases the growth and viability of L1210 leukemic cells in the same nanomolar range as daunorubicin in vitro. Anti-Cancer Drugs. 11: 339-352. https://doi.org/10.1097/00001813-200006000-00004
  19. Sakulpanich A, Gritsanapan W. 2009. Detemination of anthraquinone glycoside content in Cassia fistula leaf extracts for alternative source of laxative drug. Int. J. Biomed. Pharmaceut. Sci. 3: 42-45.
  20. Strobel T, Al-Dilaimi A, Blom J, Gessner A, Kalinowski J, Luzhetska M, et al. 2012. Complete genome sequence of Saccharothrix espanaensis DSM 44229T and comparison to the other completely sequenced Pseudonocardiaceae. BMC Genomics. 13: 465. https://doi.org/10.1186/1471-2164-13-465
  21. Strobel T, Schmidt Y, Linnenbrink V, Luzhetskyy A, Luzhetska M, Taguchi T, et al. 2013. Tracking down biotransformation to the genetic level: Identification of a highly flexibleglycosyltransferase from Saccharothrix espanaensis. Appl. Environ. Microbiol. 79: 5224-5232. https://doi.org/10.1128/AEM.01652-13
  22. Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640-6645. https://doi.org/10.1073/pnas.120163297
  23. Pandey RP, Parajuli P, Chu LL, Darsandhari S, Sohng JK. 2015. Biosynthesis of amino deoxy-sugar-conjugated flavonol glycosides by engineered Escherichia coli. Biochem. Eng. J. 101: 191-199. https://doi.org/10.1016/j.bej.2015.05.017
  24. Simkhada D, Lee HC, Sohng JK. 2010. Genetic engineering approach for the production of rhamnosyl and allosyl flavonoids from Escherichia coli. Biotechnol. Bioeng. 107: 154-162. https://doi.org/10.1002/bit.22782
  25. Al-Otaibi J S, Spittle PT, G ogary E TM. 2016. Interaction of anthraquinone anti-cancer drugs with DNA; experimental and computational quantum chemical study. J. Mol.Struct. 1127: 751-760. https://doi.org/10.1016/j.molstruc.2016.08.007
  26. Anand N, Upadhyaya K, Ajay A, Mahar R, Shukla SK, Kumar B, Tripathi RP. 2013. A Strategy for the Synthesis of Anthraquinone-Based Aryl-C-glycosides. J. Org. Chem. 78: 4685-4696. https://doi.org/10.1021/jo302589t
  27. Wang Z, Ma P, Xu L, He C, Peng Y, Xiao P. 2013. Evaluation of the content variation of anthraquinone glycosides in rhubarb by UPLC-PDA. Chem. Cent. J. 7(1): 170. https://doi.org/10.1186/1752-153X-7-170
  28. Pandey RP, Parajuli P, Koffas MAG, Sohng JK. 2016. Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology. Biotechnol. Adv. 34: 634-662. https://doi.org/10.1016/j.biotechadv.2016.02.012

Cited by

  1. Novel dTDP-l-Rhamnose Synthetic Enzymes (RmlABCD) From Saccharothrix syringae CGMCC 4.1716 for One-Pot Four-Enzyme Synthesis of dTDP-l-Rhamnose vol.12, 2021, https://doi.org/10.3389/fmicb.2021.772839