DOI QR코드

DOI QR Code

Enzymatic Biotransformation of Ginsenoside Rb2 into Rd by Recombinant α-L-Arabinopyranosidase from Blastococcus saxobsidens

  • Kim, Ju-Hyeon (Department of Biotechnology, Hankyong National University) ;
  • Oh, Jung-Mi (Department of Physiology, Chonbuk National University Medical School) ;
  • Chun, Sungkun (Department of Physiology, Chonbuk National University Medical School) ;
  • Park, Hye Yoon (National Institute of Biological Resources) ;
  • Im, Wan Taek (Department of Biotechnology, Hankyong National University)
  • Received : 2019.10.29
  • Accepted : 2019.12.12
  • Published : 2020.03.28

Abstract

In this study, we used a novel α-L-arabinopyranosidase (AbpBs) obtained from ginsenoside-converting Blastococcus saxobsidens that was cloned and expressed in Escherichia coli BL21 (DE3), and then applied it in the biotransformation of ginsenoside Rb2 into Rd. The gene, termed AbpBs, consisting of 2,406 nucleotides (801 amino acid residues), and with a predicted translated protein molecular mass of 86.4 kDa, was cloned into a pGEX4T-1 vector. A BLAST search using the AbpBs amino acid sequence revealed significant homology with a family 2 glycoside hydrolase (GH2). The over-expressed recombinant AbpBs in Escherichia coli BL21 (DE3) catalyzed the hydrolysis of the arabinopyranose moiety attached to the C-20 position of ginsenoside Rb2 under optimal conditions (pH 7.0 and 40℃). Kinetic parameters for α-L-arabinopyranosidase showed apparent Km and Vmax values of 0.078 ± 0.0002 μM and 1.4 ± 0.1 μmol/min/mg of protein against p-nitrophenyl-α-L-arabinopyranoside. Using a purified AbpBs (1 ㎍/ml), 0.1% of ginsenoside Rb2 was completely converted to ginsenoside Rd within 1 h. The recombinant AbpBs could be useful for high-yield, rapid, and low-cost preparation of ginsenoside Rd from Rb2.

Keywords

References

  1. Ernst E. 2010. Panax ginseng: an overview of the clinical evidence. J. Ginseng Res. 34: 259-263. https://doi.org/10.5142/jgr.2010.34.4.259
  2. Kim MH, Lee YC, Choi SY, Cho CW, Rho J, Lee KW. 2011. The changes of ginsenoside patterns in red ginseng processed by organic acid impregnation pretreatment. J. Ginseng Res. 35: 497-503. https://doi.org/10.5142/jgr.2011.35.4.497
  3. Yun TK. 2001. Brief introduction of Panax ginseng C.A. Meyer. J. Korean Med. Sci. 16(Suppl): S3-5. https://doi.org/10.3346/jkms.2001.16.S.S3
  4. Kim HS, Lee EH, Ko SR, Choi KJ, Park JH, Im DS. 2004. Effects of ginsenosides $Rg_3$ and $Rh_2$ on the proliferation of prostate cancer cells. Arch. Pharm. Res. 27: 429-435. https://doi.org/10.1007/BF02980085
  5. Keum YS, Han SS, Chun KS, Park KK, Park JH, Lee SK, et al. 2003. Inhibitory effects of the ginsenoside $Rg_3$ on phorbol ester-induced cyclooxygenase-2 expression, NF-kappaB activation and tumor promotion. Mutat. Res. 523-524: 75-85. https://doi.org/10.1016/S0027-5107(02)00323-8
  6. Kim S, Nah SY, Rhim H. 2008. Neuroprotective effects of ginseng saponins against L-type $Ca^{2+}$ channel-mediated cell death in rat cortical neurons. Biochem. Biophys. Res. Commun. 365: 399-405. https://doi.org/10.1016/j.bbrc.2007.10.048
  7. Zhang, JT, Qu ZW. Liu Y, Deng HL. 1990. Preliminary study on antiamnestic mechanism of ginsenoside $Rg_1$ and $Rb_1$. Chin. Med. J. 103: 932-8.
  8. Attele AS, Wu JA, Yuan CS. 1999. Ginseng pharmacology: multiple constituents and multiple actions. Biochem. Pharmacol. 58: 1685-1693. https://doi.org/10.1016/S0006-2952(99)00212-9
  9. Lee TK, Johnke RM, Allison RR, O'Brien KF, Dobbs LJ Jr. 2005. Radioprotective potential of ginseng. Mutagenesis 20: 237-243. https://doi.org/10.1093/mutage/gei041
  10. Kim SK and Park JH. 2011. Trends in ginseng research in 2010. J. Ginseng Res. 35: 389-398. https://doi.org/10.5142/jgr.2011.35.4.389
  11. Lee JH, Ahn JY, Shin TJ, Choi SH, Lee BH, Hwang SH, et al. 2011. Effects of minor ginsenosides, ginsenoside metabolites, and ginsenoside epimers on the growth of Caenorhabditis elegans. J. Ginseng Res. 35: 375-383. https://doi.org/10.5142/jgr.2011.35.3.375
  12. Christensen LP. 2009. Chapter 1. Ginsenosides: chemistry, biosynthesis, analysis, and potential health effects. Adv. Food Nutr. Res. 55: 1-99. https://doi.org/10.1016/S1043-4526(08)00401-4
  13. Wang L, Zhang Y, Wang Z, Li S, Min G, Wang L, et al. 2012. Inhibitory effect of ginsenoside-Rd on carrageenaninduced inflammation in rats. Can. J. Physiol. Pharmacol. 90: 229-236. https://doi.org/10.1139/y11-127
  14. Lin T, Liu Y, Shi M, Liu X, Li L, Liu Y, et al. 2012. Promotive effect of ginsenoside Rd on proliferation of neural stem cells in vivo and in vitro. J. Ethnopharmacol. 142: 754-761. https://doi.org/10.1016/j.jep.2012.05.057
  15. Kim WK, Song SY, Oh WK, Kaewsuwan S, Tran TL, Kim WS, et al JH. 2013. Wound-healing effect of ginsenoside Rd from leaves of Panax ginseng via cyclic AMP-dependent protein kinase pathway. 2013. Eur. J. Pharmacol. 702: 285-293. https://doi.org/10.1016/j.ejphar.2013.01.048
  16. Zhong FL, Ma R, Jiang M, Dong WW, Jiang J, Wu S, et al. 2016. Cloning and characterization of ginsenoside-hydrolyzing beta-glucosidase from Lactobacillus brevis that transforms ginsenosides $Rb_1$ and $F_2$ into Ginsenoside Rd and compound K. J. Microbiol. Biotechnol. 26: 1661-1667. https://doi.org/10.4014/jmb.1605.05052
  17. Liu QM, Jung HM, Cui CH, Sung BH, Kim JK, Kim SG, et al. 2013. Bioconversion of ginsenoside Rc into Rd by a novel alpha-L-arabinofuranosidase, Abf22-3 from Leuconostoc sp. 22-3: cloning, expression, and enzyme characterization. Antonie Van Leeuwenhoek. 103: 747-754. https://doi.org/10.1007/s10482-012-9856-2
  18. Chen Y, Zhao Z, Chen H, Brand E, Yi T, Qin M, et al. 2017. Determination of ginsenosides in Asian and American ginsengs by liquid chromatography-quadrupole/time-of-flight MS: assessing variations based on morphological characteristics. J. Ginseng Res. 41: 10-22. https://doi.org/10.1016/j.jgr.2015.12.004
  19. Shi WY. Wang JLi, Zhang H, Ding L. 2007. Investigation of ginsenosides in different parts and ages of Panax ginseng. Food Chem. 102: 664-668. https://doi.org/10.1016/j.foodchem.2006.05.053
  20. Li L, Shin SY, Lee SJ, Moon JS, Im WT, Han NS. 2016. Production of ginsenoside $F_2$ by using Lactococcus lactis with enhanced expression of beta-glucosidase gene from Paenibacillus mucilaginosus. J. Agric. Food Chem. 64: 2506-2512. https://doi.org/10.1021/acs.jafc.5b04098
  21. Du J, Cui CH, Park SC, Kim JK, Yu HS, Jin FX, et al. 2014. Identification and characterization of a ginsenoside-transforming beta-glucosidase from Pseudonocardia sp. Gsoil 1536 and its application for enhanced production of minor ginsenoside $Rg_2(S)$. PLoS One 9: e96914. https://doi.org/10.1371/journal.pone.0096914
  22. Song BK, Kim KM, Choi KD, and Im WT. 2017. Production of the rare ginsenoside $Rh_2$-MIX (20(S)-$Rh_2$, 20(R)-$Rh_2$, $Rk_2$, and $Rh_3$) by enzymatic conversion combined with acid treatment and evaluation of its anti-cancer activity. J. Microbiol. Biotechnol. 27: 1233-1241. https://doi.org/10.4014/jmb.1701.01077
  23. Park CS, Yoo MH, Noh KH, Oh DK. 2010. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl. Microbiol. Biotechnol. 87: 9-19. https://doi.org/10.1007/s00253-010-2567-6
  24. An DS, Cui CH, Lee HG, Wang L, Kim SC, Lee ST, et al. 2010. Identification and characterization of a novel Terrabacter ginsenosidimutans sp. nov. beta-glucosidase that transforms ginsenoside $Rb_1$ into the rare gypenosides XVII and LXXV. Appl. Environ. Microbiol. 76: 5827-5836. https://doi.org/10.1128/AEM.00106-10
  25. An DS, Cui CH, Sung BH, Yang HC, Kim SC, Lee ST, et al. 2012. Characterization of a novel ginsenoside-hydrolyzing alpha-L-arabinofuranosidase, AbfA, from Rhodanobacter ginsenosidimutans Gsoil 3054T. Appl. Microbiol. Biotechnol. 94: 673-682. https://doi.org/10.1007/s00253-011-3614-7
  26. Cleland WW. 1979. Statistical analysis of enzyme kinetic data. Methods Enzymol. 63: 103-138. https://doi.org/10.1016/0076-6879(79)63008-2
  27. Yang M, Cai J, Wang C, Du X, Lin, J. 2017. Characterization of endo-${\beta}$-mannanase from Enterobacter ludwigii MY271 and application in pulp industry. Bioprocess Biosyst. Eng. 40: 35-43. https://doi.org/10.1007/s00449-016-1672-z
  28. Park MK, Cui CH, Park SC, Park SK, Kim JK, Jung MS, et al. 2014. Characterization of recombinant ${\beta}$-glucosidase from Arthrobacter chlorophenolicus and biotransformation of ginsenosides $Rb_1$, $Rb_2$, Rc, and Rd. J. Microbiol. 52: 399-406. https://doi.org/10.1007/s12275-014-3601-7
  29. Prajapati BP, Kumar Suryawanshi R, Agrawal S, Ghosh M, and Kango N. 2018. Characterization of cellulase from Aspergillus tubingensis NKBP-55 for generation of fermentable sugars from agricultural residues. Bioresour. Technol. 250: 733-740. https://doi.org/10.1016/j.biortech.2017.11.099
  30. Salama P and Berk D. 2005. Photocatalytic oxidation of Ni-EDTA in a well-mixed reactor. Ind. Eng. Chem. Res. 44: 7071-7077. https://doi.org/10.1021/ie050100j
  31. Pitter P and Sykora V. 2001. Biodegradability of ethylenediamine-based complexing agents and related compounds. Chemosphere. 44: 823-826. https://doi.org/10.1016/S0045-6535(00)00512-9
  32. Quan LH, Quan LH, Wang C, Jin Y, Wang TR, Kim YJ, et al. 2013. Isolation and characterization of novel ginsenoside-hydrolyzing glycosidase from Microbacterium esteraromaticum that transforms ginsenoside $Rb_2$ to rare ginsenoside 20(S)-$Rg_3$. Antonie Van Leeuwenhoek. 104: 129-137. https://doi.org/10.1007/s10482-013-9933-1
  33. Cui CH, Kim JK, Kim SC, Im WT. 2014. Characterization of a ginsenoside-transforming beta-glucosidase from Paenibacillus mucilaginosus and its application for enhanced production of minor ginsenoside F(2). PLoS One 9: e85727. https://doi.org/10.1371/journal.pone.0085727
  34. Kim JK, Cui CH, Liu Q, Yoon MH, Kim SC, Im WT. 2013. Mass production of the ginsenoside $Rg_3(S)$ through the combinative use of two glycoside hydrolases. Food Chem. 141: 1369-1377. https://doi.org/10.1016/j.foodchem.2013.04.012
  35. Li L, Lee SJ, Yuan QP, Im WT, Kim SC, and Han NS. 2018. Production of bioactive ginsenoside $Rg_3(S)$ and compound K using recombinant Lactococcus lactis. J. Ginseng Res. 42: 412-418. https://doi.org/10.1016/j.jgr.2017.04.007
  36. Wang L, Liu QM, Sung BH, An DS, Lee HG, Kim SG, et al. 2011. Bioconversion of ginsenosides $Rb_1$, $Rb_2$, Rc and Rd by novel ${\beta}$-glucosidase hydrolyzing outer 3-O glycoside from Sphingomonas sp. 2F2: cloning, expression, and enzyme characterization. J. Biotechnol. 156: 125-133. https://doi.org/10.1016/j.jbiotec.2011.07.024

Cited by

  1. Diversity of Ginsenoside Profiles Produced by Various Processing Technologies vol.25, pp.19, 2020, https://doi.org/10.3390/molecules25194390
  2. Two Key Amino Acids Variant of α-l-arabinofuranosidase from Bacillus subtilis Str. 168 with Altered Activity for Selective Conversion Ginsenoside Rc to Rd vol.26, pp.6, 2021, https://doi.org/10.3390/molecules26061733
  3. Chryseobacterium panacisoli sp. nov., isolated from ginseng-cultivation soil with ginsenoside-converting activity vol.71, pp.11, 2020, https://doi.org/10.1099/ijsem.0.005086