References
- Chowanski S, Adamski Z, Lubawy J, Marciniak P, Pacholska-Bogalska J, Slocinska M, et al. 2017. Insect peptides - perspectives in human diseases treatment. Curr. Med. Chem. 24: 3116-3152.
- Smetana S, Palanisamy M, Mathys A, Heinz V. 2016. Sustainability of insect use for feed and food: life cycle assessment perspective. J. Clean. Prod. 137: 741-751. https://doi.org/10.1016/j.jclepro.2016.07.148
- Yi HY, Chowdhury M, Huang YD, Yu XQ. 2014. Insect antimicrobial peptides and their applications. Appl. Microbiol. Biotechnol. 98: 5807-5822. https://doi.org/10.1007/s00253-014-5792-6
- La Barbera F, Verneau F, Amato M, Grunert K. 2018. Understanding Westerners' disgust for the eating of insects: the role of food neophobia and implicit associations. Food Qual. Prefer. 64: 120-125. https://doi.org/10.1016/j.foodqual.2017.10.002
- Lee H, Hwang JS, Lee DG. 2016. Scolopendin 2 leads to cellular stress response in Candida albicans. Apoptosis 21: 856-865. https://doi.org/10.1007/s10495-016-1254-1
- Kim I-W, Lee JH, Subramaniyam S, Yun E-Y, Kim I, Park J, et al. 2016. De novo transcriptome analysis and detection of antimicrobial peptides of the American cockroach Periplaneta americana (Linnaeus). PLoS One 11: e0155304. https://doi.org/10.1371/journal.pone.0155304
- Lee H, Hwang JS, Lee J, Kim JI, Lee DG. 2015. Scolopendin 2, a cationic antimicrobial peptide from centipede, and its membrane-active mechanism. Biochim. Biophys. Acta 1848: 634-642. https://doi.org/10.1016/j.bbamem.2014.11.016
- Lee H, Hwang JS, Lee DG. 2019. Periplanetasin-4, a novel antimicrobial peptide from the cockroach, inhibits communications between mitochondria and vacuoles. Biochem. J. 476: 1267-1284. https://doi.org/10.1042/BCJ20180933
- Taniguchi M, Ochiai A, Takahashi K, Nakamichi SI, Nomoto T, Saitoh E, et al. 2016. Effect of alanine, leucine, and arginine substitution on antimicrobial activity against candida albicans and action mechanism of a cationic octadecapeptide derived from alpha-amylase of rice. Biopolymers 106: 219-229. https://doi.org/10.1002/bip.22817
- Roncevic T, Vukicevic D, Krce L, Benincasa M, Aviani I, Maravic A, et al. 2019. Selection and redesign for high selectivity of membrane-active antimicrobial peptides from a dedicated sequence/function database. Biochim. Biophys. Acta Biomembr. 1861: 827-834. https://doi.org/10.1016/j.bbamem.2019.01.017
- Lee J, Choi H, Cho J, Lee DG. 2011. Effects of positively charged arginine residues on membrane pore forming activity of Rev-NIS peptide in bacterial cells. Biochim. Biophys. Acta 1808: 2421-2427. https://doi.org/10.1016/j.bbamem.2011.06.024
- Uppu DS, Samaddar S, Ghosh C, Paramanandham K, Shome BR, Haldar J. 2016. Amide side chain amphiphilic polymers disrupt surface established bacterial bio-films and protect mice from chronic Acinetobacter baumannii infection. Biomaterials 74: 131-143. https://doi.org/10.1016/j.biomaterials.2015.09.042
- Sun C, Li Y, Cao S, Wang H, Jiang C, Pang S, et al. 2018. Antibacterial activity and mechanism of action of bovine lactoferricin derivatives with symmetrical amino acid sequences. Int. J. Mol. Sci. 19(10). pii: E2951
- Rajasekaran G, Kim EY, Shin SY. 2017. LL-37-derived membrane-active FK-13 analogs possessing cell selectivity, anti-biofilm activity and synergy with chloramphenicol and anti-inflammatory activity. Biochim. Biophys. Acta Biomembr. 1859: 722-733. https://doi.org/10.1016/j.bbamem.2017.01.037
- Cherrat L, Dumas E, Bakkali M, Degraeve P, Laglaoui A, Oulahal N. 2016. Effect of essential oils on cell viability, membrane integrity and membrane fluidity of Listeria innocua and Escherichia coli. J. Essent. Oil-Bear. Plants 19: 155-166. https://doi.org/10.1080/0972060X.2015.1029986
- Lee H, Woo ER, Lee DG. 2016. (-)-Nortrachelogenin from Partrinia scabiosaefolia elicits an apoptotic response in Candida albicans. FEMS Yeast Res. 16(3). pii: fow013
- Malanovic N, Lohner K. 2016. Gram-positive bacterial cell envelopes: the impact on the activity of antimicrobial peptides. Biochim. Biophys. Acta (BBA)-Biomembr. 1858: 936-946. https://doi.org/10.1016/j.bbamem.2015.11.004
- Leclercq SY, Sullivan MJ, Ipe DS, Smith JP, Cripps AW, Ulett GC. 2016. Pathogenesis of Streptococcus urinary tract infection depends on bacterial strain and beta-hemolysin/cytolysin that mediates cytotoxicity, cytokine synthesis, inflammation and virulence. Sci. Rep. 6: 29000. https://doi.org/10.1038/srep29000
- Mayer SF, Ducrey J, Dupasquier J, Haeni L, Rothen-Rutishauser B, Yang J, et al. 2019. Targeting specific membranes with an azide derivative of the pore-forming peptide ceratotoxin A. Biochim. Biophys. Acta Biomembr. 1861: 183023. https://doi.org/10.1016/j.bbamem.2019.07.011
- Lee DG, Kim HN, Park Y, Kim HK, Choi BH, Choi C-H, et al. 2002. Design of novel analogue peptides with potent antibiotic activity based on the antimicrobial peptide, HP (2-20), derived from N-terminus of Helicobacter pylori ribosomal protein L1. Biochim. Biophys. Acta 1598: 185-194. https://doi.org/10.1016/S0167-4838(02)00373-4
- Huang Y, Huang J, Chen Y. 2010. Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 1: 143-152. https://doi.org/10.1007/s13238-010-0004-3
- Zhang P, Ma J, Yan Y, Chen B, Liu B, Jian C, et al. 2017. Arginine modification of lycosin-I to improve inhibitory activity against cancer cells. Org. Biomol. Chem. 15: 9379-9388. https://doi.org/10.1039/C7OB02233F
- Tada N, Horibe T, Haramoto M, Ohara K, Kohno M, Kawakami K. 2011. A single replacement of histidine to arginine in EGFR-lytic hybrid peptide demonstrates the improved anticancer activity. Biochem. Biophys. Res. Commun. 407: 383-388. https://doi.org/10.1016/j.bbrc.2011.03.030
- Nakase I, Takeuchi T, Tanaka G, Futaki S. 2008. Methodological and cellular aspects that govern the internalization mechanisms of arginine-rich cell-penetrating peptides. Adv. Drug Deliv. Rev. 60: 598-607. https://doi.org/10.1016/j.addr.2007.10.006
- Krokhin O. 2012. Peptide retention prediction in reversed-phase chromatography: proteomic applications. Expert Rev. Proteomics 9: 1-4. https://doi.org/10.1586/epr.11.79
- Iyer BR, Mahalakshmi R. 2019. Hydrophobic characteristic is energetically preferred for cysteine in a model membrane protein. Biophys. J. 117: 25-35. https://doi.org/10.1016/j.bpj.2019.05.024
- Bartesaghi S, Herrera D, Martinez DM, Petruk A, Demicheli V, Trujillo M, et al. 2017. Tyrosine oxidation and nitration in transmembrane peptides is connected to lipid peroxidation. Arch. Biochem. Biophys. 622: 9-25. https://doi.org/10.1016/j.abb.2017.04.006
- El-Sayed N, Miyake T, Shirazi A, Park S, Clark J, Buchholz S, et al. 2018. Design, synthesis, and evaluation of homochiral peptides containing arginine and histidine as molecular transporters. Molecules 23: 1590. https://doi.org/10.3390/molecules23071590
- Lee TH, Hall KN, Aguilar MI. 2016. Antimicrobial peptide atructure and mechanism of ction: a focus on the role of membrane structure. Curr. Top Med. Chem. 16: 25-39. https://doi.org/10.2174/1568026615666150703121700
-
Zhang S-K, Song J-w, Gong F, Li S-B, Chang H-Y, Xie H-M, et al. 2016. Design of an
${\alpha}$ -helical antimicrobial peptide with improved cell-selective and potent anti-biofilm activity. Sci. Rep. 6: 27394. https://doi.org/10.1038/srep27394 - Poveda JA, Giudici AM, Renart ML, Millet O, Morales A, Gonzalez-Ros JM, et al. 2019. Modulation of the potassium channel KcsA by anionic phospholipids: Role of arginines at the non-annular lipid binding sites. Biochim. Biophys. Acta Biomembr. 1861: 183029. https://doi.org/10.1016/j.bbamem.2019.183029
- Yu L, Fan Q, Yue X, Mao Y, Qu L. 2015. Activity of a noveldesigned antimicrobial peptide and its interaction with lipids. J. Pept. Sci. 21: 274-282. https://doi.org/10.1002/psc.2728
- Park C, Cho J, Lee J, Lee DG. 2011. Membranolytic antifungal activity of arenicin-1 requires the N-terminal tryptophan and the beta-turn arginine. Biotechnol. Lett. 33: 185-189. https://doi.org/10.1007/s10529-010-0402-x
- Sandoval CM, Salzameda B, Reyes K, Williams T, Hohman VS, Plesniak LA. 2007. Anti-obesity and anti-tumor proapoptotic peptides are sufficient to cause release of cytochrome c from vesicles. FEBS Lett. 581: 5464-5468. https://doi.org/10.1016/j.febslet.2007.10.051
- Araujo NM, Dias LP, Costa HP, Sousa DO, Vasconcelos IM, de Morais GA, et al. 2019. ClTI, a Kunitz trypsin inhibitor purified from Cassia leiandra Benth. seeds, exerts a candidicidal effect on Candida albicans by inducing oxidative stress and necrosis. Biochim. Biophys. Acta Biomembr. 1861(11): 183032. https://doi.org/10.1016/j.bbamem.2019.183032
- Kubota S, Pomerantz RJ. 1998. A cis-acting peptide signal in human immunodeficiency virus type I Rev which inhibits nuclear entry of small proteins. Oncogene 16: 1851-1861. https://doi.org/10.1038/sj.onc.1201738