DOI QR코드

DOI QR Code

Effect of Probiotic Clostridium butyricum NCTC 7423 Supernatant on Biofilm Formation and Gene Expression of Bacteroides fragilis

  • Shi, Da-Seul (Department of Medical Sciences, College of Medical Sciences, Soonchunhyang University) ;
  • Rhee, Ki-Jong (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju) ;
  • Eom, Yong-Bin (Department of Medical Sciences, College of Medical Sciences, Soonchunhyang University)
  • Received : 2020.01.17
  • Accepted : 2020.02.07
  • Published : 2020.03.28

Abstract

Enterotoxigenic Bacteroides fragilis (ETBF) is the main pathogen causing severe inflammatory diseases and colorectal cancer. Its biofilm plays a key role in the development of colorectal cancer. The objective of this study was to determine the antagonistic effects of cell-free supernatants (CFS) derived from Clostridium butyricum against the growth and biofilm of ETBF. Our data showed that C. butyricum CFS inhibited the growth of B. fragilis in planktonic culture. In addition, C. butyricum CFS exhibited an antibiofilm effect by inhibiting biofilm development, disassembling preformed biofilms and reducing the metabolic activity of cells in biofilms. Using confocal laser scanning microscopy, we found that C. butyricum CFS significantly suppressed the proteins and extracellular nucleic acids among the basic biofilm components. Furthermore, C. butyricum CFS significantly downregulated the expression of virulence- and efflux pump-related genes including ompA and bmeB3 in B. fragilis. Our findings suggest that C. butyricum can be used as biotherapeutic agent by inhibiting the growth and biofilm of ETBF.

Keywords

References

  1. Prindiville TP, Sheikh RA, Cohen SH, Tang YJ, Cantrell MC, Silva J, Jr. 2000. Bacteroides fragilis enterotoxin gene sequences in patients with inflammatory bowel disease. Emerg. Infect. Dis. 6: 171-174. https://doi.org/10.3201/eid0602.000210
  2. Wexler HM. 2007. Bacteroides: the good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 20: 593-621. https://doi.org/10.1128/CMR.00008-07
  3. Rabizadeh S, Rhee KJ, Wu S, Huso D, Gan CM, Golub JE, et al. 2007. Enterotoxigenic Bacteroides fragilis: a potential instigator of colitis. Inflamm. Bowel Dis. 13: 1475-1483. https://doi.org/10.1002/ibd.20265
  4. Toprak NU, Yagci A, Gulluoglu BM, Akin ML, Demirkalem P, Celenk T, et al. 2006. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin. Microbiol. Infect. 12: 782-786. https://doi.org/10.1111/j.1469-0691.2006.01494.x
  5. Zou S, Fang L, Lee MH. 2018. Dysbiosis of gut microbiota in promoting the development of colorectal cancer. Gastroenterol. Rep. (Oxf). 6: 1-12. https://doi.org/10.1093/gastro/gox031
  6. Swidsinski A, Weber J, Loening-Baucke V, Hale LP, Lochs H. 2005. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J. Clin. Microbiol. 43: 3380-3389. https://doi.org/10.1128/JCM.43.7.3380-3389.2005
  7. Li S, Konstantinov SR, Smits R, Peppelenbosch MP. 2017. Bacterial biofilms in colorectal cancer initiation and progression. Trends. Mol. Med. 23: 18-30. https://doi.org/10.1016/j.molmed.2016.11.004
  8. Caglar E, Kargul B, Tanboga I. 2005. Bacteriotherapy and probiotics' role on oral health. Oral Dis. 11: 131-137. https://doi.org/10.1111/j.1601-0825.2005.01109.x
  9. FAO/WHO. 2001. Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food: Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. Rome: Publishing Management Service, Information Division, FAO.
  10. Kaur S, Sharma P, Kalia N, Singh J, Kaur S. 2018. Antibiofilm properties of the fecal probiotic Lactobacilli against Vibrio spp. Front. Cell. Infect. Microbiol. 8: 120. https://doi.org/10.3389/fcimb.2018.00120
  11. Kemgang TS, Kapila S, Shanmugam VP, Kapila R. 2014. Cross-talk between probiotic Lactobacilli and host immune system. J. Appl. Microbiol. 117: 303-319. https://doi.org/10.1111/jam.12521
  12. Seki H, Shiohara M, Matsumura T, Miyagawa N, Tanaka M, Komiyama A, et al. 2003. Prevention of antibiotic-associated diarrhea in children by Clostridium butyricum MIYAIRI. Pediatr. Int. 45: 86-90. https://doi.org/10.1046/j.1442-200X.2003.01671.x
  13. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. 2008. Review article: the role of butyrate on colonic function. Aliment. Pharmacol. Ther. 27: 104-119. https://doi.org/10.1111/j.1365-2036.2007.03562.x
  14. Kashiwagi I, Morita R, Schichita T, Komai K, Saeki K, Matsumoto M, et al. 2015. Smad2 and Smad3 Inversely Regulate TGF-beta Autoinduction in Clostridium butyricum-Activated Dendritic Cells. Immunity 43: 65-79. https://doi.org/10.1016/j.immuni.2015.06.010
  15. Kuroiwa T, Kobari K, Iwanaga M. 1990. [Inhibition of enteropathogens by Clostridium butyricum MIYAIRI 588]. Kansenshogaku Zasshi 64: 257-263. https://doi.org/10.11150/kansenshogakuzasshi1970.64.257
  16. Takahashi M, Taguchi H, Yamaguchi H, Osaki T, Kamiya S. 2000. Studies of the effect of Clostridium butyricum on Helicobacter pylori in several test models including gnotobiotic mice. J. Med. Microbiol. 49: 635-642. https://doi.org/10.1099/0022-1317-49-7-635
  17. Takahashi M, Taguchi H, Yamaguchi H, Osaki T, Komatsu A, Kamiya S. 2004. The effect of probiotic treatment with Clostridium butyricum on enterohemorrhagic Escherichia coli O157:H7 infection in mice. FEMS Immunol. Med. Microbiol. 41: 219-226. https://doi.org/10.1016/j.femsim.2004.03.010
  18. Hayashi A, Sato T, Kamada N, Mikami Y, Matsuoka K, Hisamatsu T, et al. 2013. A single strain of Clostridium butyricum induces intestinal IL-10-producing macrophages to suppress acute experimental colitis in mice. Cell Host. Microbe. 13: 711-722. https://doi.org/10.1016/j.chom.2013.05.013
  19. Rhee KJ, Wu S, Wu X, Huso DL, Karim B, Franco AA, et al. 2009. Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infect. Immun. 77: 1708-1718. https://doi.org/10.1128/IAI.00814-08
  20. Rosenblatt JE, Stewart PR. 1975. Anaerobic bag culture method. J. Clin. Microbiol. 1: 527-530. https://doi.org/10.1128/JCM.1.6.527-530.1975
  21. Kim H, Kang SS. 2019. Antifungal activities against Candida albicans, of cell-free supernatants obtained from probiotic Pediococcus acidilactici HW01. Arch. Oral Biol. 99: 113-119. https://doi.org/10.1016/j.archoralbio.2019.01.006
  22. Wasfi R, Abd El-Rahman OA, Zafer MM, Ashour HM. 2018. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans. J. Cell. Mol. Med. 22: 1972-1983. https://doi.org/10.1111/jcmm.13496
  23. Clinical and Laboratory Standards Institute. 2011. Performance standards for antimicrobial susceptibility testing of anaerobic bacteria: Informational Supplement M11-S1. Wayne, P.A.: Clinical and Laboratory Standards Institute.
  24. Jaffar N, Ishikawa Y, Mizuno K, Okinaga T, Maeda T. 2016. Mature biofilm degradation by potential probiotics: Aggregatibacter actinomycetemcomitans versus Lactobacillus spp. PLoS One. 11: e0159466. https://doi.org/10.1371/journal.pone.0159466
  25. Pratt LA, Kolter R. 1998. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol. 30: 285-293. https://doi.org/10.1046/j.1365-2958.1998.01061.x
  26. Cady NC, McKean KA, Behnke J, Kubec R, Mosier AP, Kasper SH, et al. 2012. Inhibition of biofilm formation, quorum sensing and infection in Pseudomonas aeruginosa by natural products-inspired organosulfur compounds. PLoS One 7: e38492. https://doi.org/10.1371/journal.pone.0038492
  27. Pierce CG, Uppuluri P, Tristan AR, Wormley FL, Jr., Mowat E, Ramage G, et al. 2008. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat. Protoc. 3: 1494-1500. https://doi.org/10.1038/nprot.2008.141
  28. Fischer J, Prosenc MH, Wolff M, Hort N, Willumeit R, Feyerabend F. 2010. Interference of magnesium corrosion with tetrazolium-based cytotoxicity assays. Acta Biomater. 6: 1813-1823. https://doi.org/10.1016/j.actbio.2009.10.020
  29. Nosyk O, ter Haseborg E, Metzger U, Frimmel FH. 2008. A standardized pre-treatment method of biofilm flocs for fluorescence microscopic characterization. J. Microbiol. Methods 75: 449-456. https://doi.org/10.1016/j.mimet.2008.07.024
  30. Bundgaard-Nielsen C, Baandrup UT, Nielsen LP, Sorensen S. 2019. The presence of bacteria varies between colorectal adenocarcinomas, precursor lesions and non-malignant tissue. BMC Cancer 19(1): 399. https://doi.org/10.1186/s12885-019-5571-y
  31. Wexler HM, Tenorio E, Pumbwe L. 2009. Characteristics of Bacteroides fragilis lacking the major outer membrane protein, OmpA. Microbiology 155: 2694-2706. https://doi.org/10.1099/mic.0.025858-0
  32. Pumbwe L, Ueda O, Yoshimura F, Chang A, Smith RL, Wexler HM. 2006. Bacteroides fragilis BmeABC efflux systems additively confer intrinsic antimicrobial resistance. J. Antimicrob. Chemother. 58: 37-46. https://doi.org/10.1093/jac/dkl202
  33. Cassir N, Benamar S, La Scola B. 2016. Clostridium butyricum: from beneficial to a new emerging pathogen. Clin. Microbiol. Infect. 22: 37-45. https://doi.org/10.1016/j.cmi.2015.10.014
  34. Di Martino P. 2018. Extracellular polymeric substances, a key element in understanding biofilm phenotype. AIMS Microbiol. 4: 274-288. https://doi.org/10.3934/microbiol.2018.2.274
  35. Dejea CM, Wick EC, Hechenbleikner EM, White JR, Mark Welch JL, Rossetti BJ, et al. 2014. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc. Natl. Acad. Sci. USA 111: 18321-18326. https://doi.org/10.1073/pnas.1406199111
  36. Jia L, Li D, Feng N, Shamoon M, Sun Z, Ding L, et al. 2017. Anti-diabetic effects of Clostridium butyricum CGMCC0313.1 through promoting the growth of gut butyrate-producing bacteria in type 2 diabetic mice. Sci. Rep. 7: 7046. https://doi.org/10.1038/s41598-017-07335-0
  37. Chen ZF, Ai LY, Wang JL, Ren LL, Yu YN, Xu J, et al. 2015. Probiotics Clostridium butyricum and Bacillus subtilis ameliorate intestinal tumorigenesis. Future Microbiol. 10: 1433-1445. https://doi.org/10.2217/fmb.15.66
  38. Pierce JV, Bernstein HD. 2016. Genomic diversity of enterotoxigenic strains of Bacteroides fragilis. PLoS One 11: e0158171. https://doi.org/10.1371/journal.pone.0158171
  39. Nakanishi S, Tanaka M. 2010. Sequence analysis of a bacteriocinogenic plasmid of Clostridium butyricum and expression of the bacteriocin gene in Escherichia coli. Anaerobe. 16: 253-257. https://doi.org/10.1016/j.anaerobe.2009.10.002
  40. Isono A, Katsuno T, Sato T, Nakagawa T, Kato Y, Sato N, et al. 2007. Clostridium butyricum TO-A culture supernatant downregulates TLR4 in human colonic epithelial cells. Dig. Dis. Sci. 52: 2963-2971. https://doi.org/10.1007/s10620-006-9593-3
  41. Jia L, Shan K, Pan LL, Feng N, Lv Z, Sun Y, et al. 2017. Clostridium butyricum CGMCC0313.1 Protects against autoimmune diabetes by modulating intestinal immune homeostasis and inducing pancreatic regulatory T cells. Front. Immunol. 8: 1345. https://doi.org/10.3389/fimmu.2017.01345
  42. Shang H, Sun J, Chen YQ. 2016. Clostridium Butyricum CGMCC0313.1 Modulates lipid profile, insulin resistance and colon homeostasis in obese mice. PLoS One 11: e0154373. https://doi.org/10.1371/journal.pone.0154373
  43. Gill PA, van Zelm MC, Muir JG, Gibson PR. 2018. Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Aliment. Pharmacol. Ther. 48: 15-34. https://doi.org/10.1111/apt.14689
  44. Chung PY, Toh YS. 2014. Anti-biofilm agents: recent breakthrough against multi-drug resistant Staphylococcus aureus. Pathog. Dis. 70: 231-239. https://doi.org/10.1111/2049-632X.12141
  45. Cordeiro RA, Aguiar ALR, Pereira VS, Pereira LMG, Portela FVM, Brilhante RSN, et al. 2019. Sodium butyrate inhibits planktonic cells and biofilms of Trichosporon spp. Microb. Pathog. 130: 219-225. https://doi.org/10.1016/j.micpath.2019.03.013
  46. Seghal Kiran G, Priyadharshini S, Dobson ADW, Gnanamani E, Selvin J. 2016. Degradation intermediates of polyhydroxy butyrate inhibits phenotypic expression of virulence factors and biofilm formation in luminescent Vibrio sp. PUGSK8. NPJ Biofilms Microbiomes 2: 16002. https://doi.org/10.1038/npjbiofilms.2016.2
  47. Poquet I, Saujet L, Canette A, Monot M, Mihajlovic J, Ghigo JM, et al. 2018. Clostridium difficile Biofilm: Remodeling metabolism and cell surface to build a sparse and heterogeneously aggregated architecture. Front. Microbiol. 9: 2084. https://doi.org/10.3389/fmicb.2018.02084
  48. Pumbwe L, Skilbeck CA, Nakano V, Avila-Campos MJ, Piazza RM, Wexler HM. 2007. Bile salts enhance bacterial co-aggregation, bacterial-intestinal epithelial cell adhesion, biofilm formation and antimicrobial resistance of Bacteroides fragilis. Microb. Pathog. 43: 78-87. https://doi.org/10.1016/j.micpath.2007.04.002
  49. Pumbwe L, Skilbeck CA, Wexler HM. 2008. Presence of quorum-sensing systems associated with multidrug resistance and biofilm formation in Bacteroides fragilis. Microb. Ecol. 56: 412-419. https://doi.org/10.1007/s00248-007-9358-3
  50. Venter H, Mowla R, Ohene-Agyei T, Ma S. 2015. RND-type drug efflux pumps from Gram-negative bacteria: molecular mechanism and inhibition. Front. Microbiol. 6: 377. https://doi.org/10.3389/fmicb.2015.00377

Cited by

  1. Colon Carcinogenesis: The Interplay Between Diet and Gut Microbiota vol.10, 2020, https://doi.org/10.3389/fcimb.2020.603086
  2. Targeting Gut Microbial Biofilms—A Key to Hinder Colon Carcinogenesis? vol.12, pp.8, 2020, https://doi.org/10.3390/cancers12082272