References
- Scarpini E, Cogiamanian F. 2003. Alzheimer's disease: from molecular pathogenesis to innovative therapies. Expert Rev. Neurother. 3: 619-630. https://doi.org/10.1586/14737175.3.5.619
- Kovacs GG. 2014. Current concepts of neurodegenerative diseases. EMJ Neurol. 1: 78-86.
- World Health Organization. 2017. Dementia: a public health priority. Available from https://www.who.int/en/newsroom/fact-sheets/detail/dementia. Accessed on October 9th, 2019.
- Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. 2017. Oxidative stress: harms and benefits for human health. Oxid. Med. Cell. Longev. 2017: 8416763.
- Jezek J, Cooper K, Strich R. 2018. Reactive oxygen species and mitochondrial dynamics: the yin and yang of mitochondrial dysfunction and cancer progression. Antioxidants 7: 13. https://doi.org/10.3390/antiox7010013
- Tabner BJ, El-Agnaf OMA, Turnbull S, German MJ, Paleologou KE, Hayashi Y, et al. 2005. Hydrogen peroxide is generated during the very early stages of aggregation of the amyloid peptides implicated in Alzheimer disease and familial British dementia. J. Biol. Chem. 280: 35789-35792. https://doi.org/10.1074/jbc.C500238200
- Halliwell B. 2012. Free radicals and antioxidants: updating a personal view. Nutr. Rev. 70: 257-265. https://doi.org/10.1111/j.1753-4887.2012.00476.x
- Panahi Y, Rajaee SM, Johnston TP, Sahebkar A. 2019. Neuroprotective effects of antioxidants in the management of neurodegenerative disorders: a literature review. J. Cell. Biochem. 120: 2742-2748. https://doi.org/10.1002/jcb.26536
- Soreq H, Seidman S. 2001. Acetylcholinesterase - new roles for an old actor. Nat. Rev. Neurosci. 2: 294-302. https://doi.org/10.1038/35067589
- Darvesh S, Hopkins DA, Geula C. 2003. Neurobiology of butyrylcholinesterase. Nat. Rev. Neurosci. 4: 131-138. https://doi.org/10.1038/nrn1035
- Lee S, Lee D, Baek J, Jung EB, Baek JY, Lee IK, et al. 2017. In vitro assessment of selected Korean plants for antioxidant and antiacetylcholinesterase activities. Pharm. Biol. 55: 2205-2210. https://doi.org/10.1080/13880209.2017.1397179
- Park SK, Kang JY, Kim JM, Park SH, Kwon BS, Kim G-H, et al. 2018. Protective effect of fucoidan extract from Ecklonia cava on hydrogen peroxide-induced neurotoxicity. J. Microbiol. Biotechnol. 28: 40-49. https://doi.org/10.4014/jmb.1710.10043
- Lee J-w, Seok JK, Boo YC. 2018. Ecklonia cava extract and dieckol attenuate cellular lipid peroxidation in keratinocytes exposed to PM10. Evid.-Based Compl. Alt. Med. 2018: 8248323.
- Singh IP, Bharate SB. 2006. Phloroglucinol compounds of natural origin. Nat. Prod. Rep. 23: 558-591. https://doi.org/10.1039/b600518g
- Wijesinghe WAJP, Jeon Y-J. 2011. Exploiting biological activities of brown seaweed Ecklonia cava for potential industrial applications: a review. Int. J. Food Sci. Nutr. 63: 225-235. https://doi.org/10.3109/09637486.2011.619965
- Le Q-T, Li Y, Qian Z-J, Kim M-M, Kim S-K. 2009. Inhibitory effects of polyphenols isolated from marine alga Ecklonia cava on histamine release. Process Biochem. 44: 168-176. https://doi.org/10.1016/j.procbio.2008.10.002
-
Lee SH, Li Y, Karadeniz F, Kim M-M, Kim S-K. 2009.
${\alpha}$ -Glucosidase and${\alpha}$ -amylase inhibitory activities of phloroglucinal derivatives from edible marine brown alga, Ecklonia cava. J. Sci. Food. Agric. 89: 1552-1558. https://doi.org/10.1002/jsfa.3623 - Cho S, Yang H, Jeon Y-J, Lee CJ, Jin Y-H, Baek N-I, et al. 2012. Phlorotannins of the edible brown seaweed Ecklonia cava Kjellman induce sleep via positive allosteric modulation of gamma-aminobutyric acid type A-benzodiazepine receptor: a novel neurological activity of seaweed polyphenols. Food Chem. 132: 1133-1142. https://doi.org/10.1016/j.foodchem.2011.08.040
- Alghazwi M, Kan YQ, Zhang W, Gai WP, Garson MJ, Smid S. 2016. Neuroprotective activities of natural products from marine macroalgae during 1999-2015. J. Appl. Phycol. 28: 3599-3616. https://doi.org/10.1007/s10811-016-0908-2
- Pangestuti R, Kim S-K. 2011. Neuroprotective effects of marine algae. Mar. Drugs 9: 803-818. https://doi.org/10.3390/md9050803
- Kim J, Um M, Yang H, Kim I, Lee C, Kim Y, et al. 2016. Method development and validation fordieckol in the standardization of phlorotannin preparations. Fish. Aquat. Sci. 19: 3. https://doi.org/10.1186/s41240-016-0003-2
- Singleton VL, Rossi JA, Jr. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16: 144-158.
- Kim D-O, Lee CY. 2004. Comprehensive study of vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Crit. Rev. Food Sci. Nutr. 44: 253-273. https://doi.org/10.1080/10408690490464960
- Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28: 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
-
Heo H-J, Cho H-Y, Hong B, Kim H-K, Kim E-K, Kim B-G, et al. 2001. Protective effect of 4',5-dihydroxy-3',6,7-trimethoxyflavone from Artemisia asiatica against
$A{\beta}$ -induced oxidative stress in PC12 cells. Amyloid-J. Protein Fold. Disord. 8: 194-201. https://doi.org/10.3109/13506120109007362 - Wolfe KL, Liu RH. 2007. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J. Agric. Food Chem. 55: 8896-8907. https://doi.org/10.1021/jf0715166
- Ellman GL, Courtney KD, Andres V, Jr., Featherstone RM. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 88-95. https://doi.org/10.1016/0006-2952(61)90145-9
- Heo S-J, Park E-J, Lee K-W, Jeon Y-J. 2005. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresour. Technol. 96: 1613-1623. https://doi.org/10.1016/j.biortech.2004.07.013
- Senevirathne M, Kim S-H, Siriwardhana N, Ha J-H, Lee K-W, Jeon Y-J. 2006. Antioxidant potential of Ecklonia cava on reactive oxygen species scavenging, metal chelating, reducing power and lipid peroxidation inhibition. Food Sci. Technol. Int. 12: 27-38. https://doi.org/10.1177/1082013206062422
- Lee J-H, Kim G-H. 2015. Evaluation of antioxidant activity of marine algae-extracts from Korea. J. Aquat. Food Prod. Technol. 24: 227-240. https://doi.org/10.1080/10498850.2013.770809
- Shin D-B, Han E-H, Park S-S. 2014. Cytoprotective effects of Phaeophyta extracts from the coast of Jeju island in HT-22 mouse neuronal cells. J. Korean Soc. Food Sci. Nutr. 43: 224-230. https://doi.org/10.3746/jkfn.2014.43.2.224
- Kim D-O, Lee KW, Lee HJ, Lee CY. 2002. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J. Agric. Food Chem. 50: 3713-3717. https://doi.org/10.1021/jf020071c
- Yoo KM, Kim D-O, Lee CY. 2007. Evaluation of different methods of antioxidant measurement. Food Sci. Biotechnol. 16: 177-182.
- Li Y, Qian Z-J, Ryu B, Lee S-H, Kim M-M, Kim S-K. 2009. Chemical components and its antioxidant properties in vitro: an edible marine brown alga, Ecklonia cava. Bioorg. Med. Chem. 17: 1963-1973. https://doi.org/10.1016/j.bmc.2009.01.031
- Kang HS, Chung HY, Jung JH, Son BW, Choi JS. 2003. A new phlorotannin from the brown alga Ecklonia stolonifera. Chem. Pharm. Bull. 51: 1012-1014. https://doi.org/10.1248/cpb.51.1012
- Shibata T, Ishimaru K, Kawaguchi S, Yoshikawa H, Hama Y. 2008. Antioxidant activities of phlorotannins isolated from Japanese Laminariaceae. J. Appl. Phycol. 20: 705-711. https://doi.org/10.1007/s10811-007-9254-8
- Kang I-J, Jeon YE, Yin XF, Nam J-S, You SG, Hong MS, et al. 2011. Butanol extract of Ecklonia cava prevents production and aggregation of beta-amyloid, and reduces beta-amyloid mediated neuronal death. Food Chem. Toxicol. 49: 2252-2259. https://doi.org/10.1016/j.fct.2011.06.023
- Kang IJ, Jang BG, In S, Choi B, Kim M, Kim MJ. 2013. Phlorotannin-rich Ecklonia cava reduces the production of beta-amyloid by modulating alpha- and gamma-secretase expression and activity. NeuroToxicology 34: 16-24. https://doi.org/10.1016/j.neuro.2012.09.013
- Kim HS, Lee K, Kang KA, Lee NH, Hyun JW, Kim H-S. 2012. Phloroglucinol exerts protective effects against oxidative stress-induced cell damage in SH-SY5Y cells. J. Pharmacol. Sci. 119: 186-192. https://doi.org/10.1254/jphs.12056FP
- Kim J-J, Kang Y-J, Shin S-A, Bak D-H, Lee JW, Lee KB, et al. 2016. Phlorofucofuroeckol improves glutamate-induced neurotoxicity through modulation of oxidative stress-mediated mitochondrial dysfunction in PC12 cells. PLoS One 11: e0163433. https://doi.org/10.1371/journal.pone.0163433
-
Cha S-H, Heo S-J, Jeon Y-J, Park SM. 2016. Dieckol, an edible seaweed polyphenol, retards rotenone-induced neurotoxicity and
${\alpha}$ -synuclein aggregation in human dopaminergic neuronal cells. RSC Adv. 6: 110040-110046. https://doi.org/10.1039/C6RA21697H - Othman SB, Yabe T. 2015. Use of hydrogen peroxide and peroxyl radicals to induce oxidative stress in neuronal cells. Rev. Agric. Sci. 3: 40-45. https://doi.org/10.7831/ras.3.40
-
Kang S-M, Cha S-H, Ko J-Y, Kang M-C, Kim D, Heo S-J, et al. 2012. Neuroprotective effects of phlorotannins isolated from a brown alga, Ecklonia cava, against
$H_2O_2$ -induced oxidative stress in murine hippocampal HT22 cells. Environ. Toxicol. Pharmacol. 34: 96-105. https://doi.org/10.1016/j.etap.2012.03.006 - Yoon NY, Chung HY, Kim HR, Choi JS. 2008. Acetyl- and butyrylcholinesterase inhibitory activities of sterols and phlorotannins from Ecklonia stolonifera. Fish. Sci. 74: 200-207. https://doi.org/10.1111/j.1444-2906.2007.01511.x
- Myung C-S, Shin H-C, Bao HY, Yeo SJ, Lee BH, Kang JS. 2005. Improvement of memory by dieckol and phlorofucofuroeckol in ethanol-treated mice: possible involvement of the inhibition of acetylcholinesterase. Arch. Pharm. Res. 28: 691-698. https://doi.org/10.1007/BF02969360
Cited by
- Effects of Ecklonia cava Extract on Neuronal Damage and Apoptosis in PC-12 Cells against Oxidative Stress vol.31, pp.4, 2021, https://doi.org/10.4014/jmb.2012.12013
- Modulation of the ubiquitin-proteasome system by marine natural products vol.41, 2021, https://doi.org/10.1016/j.redox.2021.101897
- Mixture of Phlorotannin and Fucoidan from Ecklonia cava Prevents the Aβ-Induced Cognitive Decline with Mitochondrial and Cholinergic Activation vol.19, pp.8, 2021, https://doi.org/10.3390/md19080434