References
- Gotz F, Bannerman T, Schleifer K-H. 2006. The genera Staphylococcus and Macrococcus. Prokaryotes 4: 5-75.
- Irlinger F. 2008. Safety assessment of dairy microorganisms: coagulase-negative staphylococci. Int. J. Food Microbiol. 126: 302-310. https://doi.org/10.1016/j.ijfoodmicro.2007.08.016
- Coton E, Mulder N, Coton M, Pochet S, Trip H, Lolkema JS. 2010. Origin of the putrescine-producing ability of the coagulase-negative bacterium Staphylococcus epidermidis 2015B. Appl. Environ. Microbiol. 76: 5570-5576. https://doi.org/10.1128/AEM.00441-10
- Widerstrom M, Wistrom J, Sjostedt A, Monsen T. 2012. Coagulase-negative staphylococci: update on the molecular epidemiology and clinical presentation, with a focus on Staphylococcus epidermidis and Staphylococcus saprophyticus. Eur. J. Clin Microbiol. Infect. Dis. 31: 7-20. https://doi.org/10.1007/s10096-011-1270-6
- Natoli S, Fontana C, Favaro M, Bergamini A, Testore GP, Minelli S, et al. 2009. Characterization of coagulase-negative staphylococcal isolates from blood with reduced susceptibility to glycopeptides and therapeutic options. BMC Infect. Dis. 9: 83. https://doi.org/10.1186/1471-2334-9-83
- Kacica MA, Horgan MJ, Preston KE, Lepow M, Venezia RA. 1994. Relatedness of coagulase-negative staphylococci causing bacteremia in low-birthweight infants. Infect. Control Hosp. Epidemiol. 15: 658-662. https://doi.org/10.2307/30145277
- Sung JS, Chun J, Choi S, Park W. 2012. Genome sequence of the halotolerant Staphylococcus sp. strain OJ82, isolated from Korean traditional salt-fermented seafood. J. Bacteriol. 194: 6353-6354. https://doi.org/10.1128/JB.01653-12
- Jeong DW, Lee JH. 2017. Complete genome sequence of Staphylococcus succinus 14BME20 isolated from a traditional Korean fermented soybean good. Genome Announc. 5: e01731-16.
- Rosenstein R, Nerz C, Biswas L, Resch A, Raddatz G, Schuster SC, Gotz F. 2009. Genome analysis of the meat starter culture bacterium Staphylococcus carnosus TM300. Appl. Environ. Microbiol. 75: 811-822. https://doi.org/10.1128/AEM.01982-08
- Labrie SJ, El Haddad L, Tremblay DM, Plante PL, Wasserscheid J, Dumaresq J, et al. 2014. First complete genome sequence of Staphylococcus xylosus, a meat starter culture and a host to propagate Staphylococcus aureus phages. Genome Announc. 2: e00671-14.
- Irlinger F, Loux V, Bento P, Gibrat JF, Straub C, Bonnarme P, et al. 2012. Genome sequence of Staphylococcus equorum subsp. equorum Mu2, isolated from a French smear-ripened cheese. J. Bacteriol. 194: 5141-5142. https://doi.org/10.1128/JB.01038-12
- Jeong DW, Na H, Ryu S, Lee JH. 2016. Complete genome sequence of Staphylococcus equorum KS1039 isolated from Saeu-jeotgal, Korean high-salt-fermented seafood. J. Biotechnol. 219: 88-89. https://doi.org/10.1016/j.jbiotec.2015.12.025
- Hammes WP, Hertel C. 1998. New developments in meat starter cultures. Meat Sci. 49S1: S125-138. https://doi.org/10.1016/S0309-1740(98)90043-2
- Fulladosa E, Garriga M, Martin B, Guardia MD, Garcia-Regueiro JA, Arnau J. 2010. Volatile profile and microbiological characterization of hollow defect in dry-cured ham. Meat Sci. 86: 801-807. https://doi.org/10.1016/j.meatsci.2010.06.025
- Berdague JL, Monteil P, Montel MC, Talon R. 1993. Effects of starter cultures on the formation of flavour compounds in dry sausage. Meat Sci. 35: 275-287. https://doi.org/10.1016/0309-1740(93)90033-E
- Sondergaard AK, Stahnke LH. 2002. Growth and aroma production by Staphylococcus xylosus, S. carnosus and S. equorum-a comparative study in model systems. Int. J. Food Microbiol. 75: 99-109. https://doi.org/10.1016/S0168-1605(01)00729-2
- Stahnke LH. 1994. Aroma components from dried sausages fermented with Staphylococcus xylosus. Meat Sci. 38: 39-53. https://doi.org/10.1016/0309-1740(94)90094-9
- Talon R, Leroy S, Lebert I, Giammarinaro P, Chacornac JP, Latorre-Moratalla M, et al. 2008. Safety improvement and preservation of typical sensory qualities of traditional dry fermented sausages using autochthonous starter cultures. Int. J. Food Microbiol. 126: 227-234. https://doi.org/10.1016/j.ijfoodmicro.2008.05.031
- Seitter M, Geng B, Hertel C. 2011. Binding to extracellular matrix proteins and formation of biogenic amines by food-associated coagulase-negative staphylococci. Int. J. Food Microbiol. 145: 483-487. https://doi.org/10.1016/j.ijfoodmicro.2011.01.026
- Seitter M, Nerz C, Rosenstein R, Gotz F, Hertel C. 2011. DNA microarray based detection of genes involved in safety and technologically relevant properties of food associated coagulase-negative staphylococci. Int. J. Food Microbiol. 145: 449-458. https://doi.org/10.1016/j.ijfoodmicro.2011.01.021
- Marty E, Bodenmann C, Buchs J, Hadorn R, Eugster-Meier E, Lacroix C, et al. 2012. Prevalence of antibiotic resistance in coagulase-negative staphylococci from spontaneously fermented meat products and safety assessment for new starters. Int. J. Food Microbiol. 159: 74-83. https://doi.org/10.1016/j.ijfoodmicro.2012.07.025
- Marino M, Frigo F, Bartolomeoli I, Maifreni M. 2011. Safety-related properties of staphylococci isolated from food and food environments. J. Appl. Microbiol. 110: 550-561. https://doi.org/10.1111/j.1365-2672.2010.04909.x
- Jeong DW, Lee B, Her JY, Lee KG, Lee JH. 2016. Safety and technological characterization of coagulase-negative staphylococci isolates from traditional Korean fermented soybean foods for starter development. Int. J. Food Microbiol. 236: 9-16. https://doi.org/10.1016/j.ijfoodmicro.2016.07.011
- Even S, Leroy S, Charlier C, Zakour NB, Chacornac JP, Lebert I, et al. 2010. Low occurrence of safety hazards in coagulase negative staphylococci isolated from fermented foodstuffs. Int. J. Food Microbiol. 139: 87-95. https://doi.org/10.1016/j.ijfoodmicro.2010.02.019
- Guan L, Cho KH, Lee JH. 2011. A nalysis of the c ultivable bacterial community in jeotgal, a Korean salted and fermented seafood, and identification of its dominant bacteria. Food Microbiol. 28: 101-113. https://doi.org/10.1016/j.fm.2010.09.001
- Jeong DW, Kim HR, Jung G, Han S, Kim CT, Lee JH. 2014. Bacterial community migration in the ripening of doenjang, a traditional Korean fermented soybean food. J. Microbiol Biotechnol. 24: 648-660. https://doi.org/10.4014/jmb.1401.01009
- Jung JY, Lee SH, Lee HJ, Jeon CO. 2013. Microbial succession and metabolite changes during fermentation of saeu-jeot: traditional Korean salted seafood. Food Microbiol. 34: 360-368. https://doi.org/10.1016/j.fm.2013.01.009
- Jung JY, Lee SH, Jeon CO. 2014. Microbial community dynamics during fermentation of doenjang-meju, traditional Korean fermented soybean. Int. J. Food Microbiol. 185: 112-120. https://doi.org/10.1016/j.ijfoodmicro.2014.06.003
- Nam YD, Lee SY, Lim SI. 2012. Microbial community analysis of Korean soybean pastes by next-generation sequencing. Int. J. Food Microbiol. 155: 36-42. https://doi.org/10.1016/j.ijfoodmicro.2012.01.013
- Jeong DW, Heo S, Lee B, Lee H, Jeong K, Her JY, et al. 2017. Effects of the predominant bacteria from meju and doenjang on the production of volatile compounds during soybean fermentation. Int. J. Food Microbiol. 262: 8-13. https://doi.org/10.1016/j.ijfoodmicro.2017.09.011
- Jeong DW, Lee H, Jeong K, Kim CT, Shim ST, Lee JH. 2019. Effects of starter candidates and NaCl on the production of volatile compounds during soybean fermentation. J. Microbiol. Biotechnol. 29: 8-13.
- Muller A, Klumpp J, Schmidt H, Weiss A. 2016. Complete genome sequence of Staphylococcus carnosus LTH 3730. Genome Announc. 4: e01038-16.
- Megaw J, Gilmore BF. 2016. Draft genome sequence of Staphylococcus succinus strain CSM-77, a moderately halophilic bacterium isolated from a triassic salt mine. Genome Announc. 4: e00532-00516.
- Zhou H, Yao Z, Shi H, Wang B, Li D, Hou J, et al. 2017. Draft genome sequence of Staphylococcus succinus subsp. succinus type strain DSM 14617, isolated from plant and soil inclusions within 25- to 35-million-year-old dominican amber. Genome Announc. 5: e01521-16.
- Dordet-Frisoni E, Talon R, Leroy S. 2007. Physical and genetic map of the Staphylococcus xylosus C2a chromosome. FEMS Microbiol. Lett. 266: 184-193. https://doi.org/10.1111/j.1574-6968.2006.00538.x
- Kuroda M, Yamashita A, Hirakawa H, Kumano M, Morkawa K, Higashide M, et al. 2005. Whole genome sequence of Staphylococcus saprophyticus reveals the pathogenesis of uncomplicated urinary tract infection. Proc. Natl. Acad. Sci. USA 102: 13272-13277. https://doi.org/10.1073/pnas.0502950102
- Ma AP, Jiang J, Tun HM, Mauroo NF, Yuen CS, Leung FC. 2014. Complete genome sequence of Staphylococcus xylosus HKUOPL8, a potential opportunistic pathogen of mammals. Genome Announc. 2: e00653-14.
- Jeong DW, Han S, Lee JH. 2014. Safety and technological characterization of Staphylococcus equorum isolates from jeotgal, a Korean high-salt-fermented seafood, for starter development. Int. J. Food Microbiol. 188: 108-115. https://doi.org/10.1016/j.ijfoodmicro.2014.07.022
- Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57: 81-91. https://doi.org/10.1099/ijs.0.64483-0
- Blom J, Albaum SP, Doppmeier D, Puhler A, Vorholter FJ, Zakrzewski M, et al. 2009. EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinformatics 10: 154. https://doi.org/10.1186/1471-2105-10-154
- Blom J, Kreis J, Spanig S, Juhre T, Bertelli C, Ernst C, et al. 2016. EDGAR 2.0: an enhanced software platform for comparative gene content analyses. Nucleic Acids Res. 44: W22-28. https://doi.org/10.1093/nar/gkw255
- Lerat E, Daubin V, Moran NA. 2003. From gene trees to organismal phylogeny in prokaryotes: the case of the gamma-Proteobacteria. PLoS Biol. 1: 101-109.
- Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. 2011. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics. 12: 402. https://doi.org/10.1186/1471-2164-12-402
- Arndt D, Marcu A, Liang Y, Wishart DS. 2017. PHAST, PHASTER and PHASTEST: Tools for finding prophage in bacterial genomes. Brief Bioinform. 20: 1560-1567.
- Sullivan MJ, Petty NK, Beatson SA. 2011. Easyfig: a genome comparison visualizer. Bioinformatics 27: 1009-1010. https://doi.org/10.1093/bioinformatics/btr039
- Jeong DW, Kim HR, Lee JH. 2014. Genetic diversity of Staphylococcus equorum isolates from Saeu-jeotgal evaluated by multilocus sequence typing. Antonie. Van. Leeuwenhoek 106: 795-808. https://doi.org/10.1007/s10482-014-0249-6
- Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R. 2005. The microbial pan-genome. Curr. Opin. Genet. Dev. 15: 589-594. https://doi.org/10.1016/j.gde.2005.09.006
- Novakova D, Sedlacek I, Pantucek R, Stetina V, Svec P, Petras P. 2006. Staphylococcus equorum and Staphylococcus succinus isolated from human clinical specimens. J. Med. Microbiol. 55: 523-528. https://doi.org/10.1099/jmm.0.46246-0
- Kwan T, Liu J, DuBow M, Gros P, Pelletier J. 2005. The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc. Natl. Acad. Sci. USA 102: 5174-5179. https://doi.org/10.1073/pnas.0501140102
- Zhang R, Ou HY, Gao F, Luo H. 2014. Identification of horizontally-transferred genomic islands and genome segmentation points by using the GC profile method. Curr. Genomics 15: 113-121. https://doi.org/10.2174/1389202915999140328163125
- Zhang R, Zhang CT. 2005. Genomic islands in the corynebacterium efficiens genome. Appl. Environ. Microbiol. 71: 3126-3130. https://doi.org/10.1128/AEM.71.6.3126-3130.2005
- Cuecas A, Kanoksilapatham W, Gonzalez JM. 2017. Evidence of horizontal gene transfer by transposase gene analyses in fervidobacterium species. PLoS One 12: e0173961. https://doi.org/10.1371/journal.pone.0173961
- Margos G, Hepner S, Mang C, Marosevic D, Reynolds SE, Krebs S, et al. 2017. Lost in plasmids: next generation sequencing and the complex genome of the tick-borne pathogen borrelia burgdorferi. BMC Genomics 18: 422. https://doi.org/10.1186/s12864-017-3804-5
- Arredondo-Alonso S, Willems RJ, van Schaik W, Schurch AC. 2016. On the (im)possibility of reconstructing plasmids from whole-genome short-read sequencing data. BioRxiv. 3: e000128.
- Haaber J, Penades JR, Ingmer H. 2017. Transfer of antibiotic resistance in Staphylococcus aureus. Trends Microbiol. 25: 893-905. https://doi.org/10.1016/j.tim.2017.05.011