Acknowledgement
Supported by : 경북대학교
이 논문은 2018학년도 경북대학교 국립대학육성사업 지원비에 의하여 연구되었음
References
- Special Act on the Safety and Maintenance of Facilities, Act No. 15535 (2018).
- Detailed Instructions for Safety and Maintenance of Facilities (Safety Inspection and Diagnosis) (2019). Korea Infrastructure Safety and Technology Corporation.
- Fujita, Y., Mitani, Y., & Hamamoto, Y. (2006). A Method for Crack Detection on a Concrete Structure. In 18th International Conference on Pattern Recognition (ICPR'06), 901-904.
- Yamaguchi, T., Nakamura, S., Saegusa, R., & Hashimoto, S. (2007). Image-Based Crack Detection for Real Concrete Surfaces. IEEJ Transactions on Electrical and Electronic Engineering, 3(1), 128-135. https://doi.org/10.1002/tee.20244
- Fujita, Y., & Hamamoto, Y. (2010). A robust automatic crack detection method from noisy concrete surfaces. Machine Vision and Applications, 22(2), 245-254. https://doi.org/10.1007/s00138-009-0244-5
- Fujita, Y., & Hamamoto, Y. (2010). A robust automatic crack detection method from noisy concrete surfaces. Machine Vision and Applications, 22(2), 245-254. https://doi.org/10.1007/s00138-009-0244-5
- Lee, B. Y., Kim, Y. Y., Yi, S.-T., & Kim, J.-K. (2013). Automated image processing technique for detecting and analysing concrete surface cracks. Structure and Infrastructure Engineering, 9(6), 567-577. https://doi.org/10.1080/15732479.2011.593891
- Santhi, B., Krishnamurthy, G., Siddharth, S., & Ramakrishnan, P.K.. (2012). Automatic detection of cracks in pavements using edge detection operator. Journal of Theoretical and Applied Information Technology. 36. 199-205.
- Abdel-Qader, I., Abudayyeh, O., & Kelly, M. E. (2003). Analysis of Edge-Detection Techniques for Crack Identification in Bridges. Journal of Computing in Civil Engineering, 17(4), 255-263. https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(255)
- LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation, 1(4), 541-551. https://doi.org/10.1162/neco.1989.1.4.541
- https://bskyvision.com/425
- https://www.sallys.space/blog/2018/01/26/cnn-imagenet/
- Cha, Y. J., Choi, W., & Buyukozturk, O. (2017). Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks. Computer-Aided Civil and Infrastructure Engineering, 32(5), 361-378. https://doi.org/10.1111/mice.12263
- Li, S., & Zhao, X. (2019). Image-Based Concrete Crack Detection Using Convolutional Neural Network and Exhaustive Search Technique. Advances in Civil Engineering, 2019, 1-12.
- Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. In NIPS.
- Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2014). Going Deeper with Convolutions. Retrieved November 26, 2019 from https://arxiv.org/abs/1409.4842
- Simonyan, K., & Zisserman, A. (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. Retrieved November 26, 2019 from https://arxiv.org/abs/1409.1556.
- He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition. Retrieved November 26, 2019 from https://arxiv.org/abs/1512.03385.
- Iandola, F., Han, S., Moskewicz, M., Ashraf, K., Dally, W., & Keutzer, K. (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. Retrieved November 26, 2019 from https://arxiv.org/abs/1602.07360.
- Lee, M., & Seo, K. (2018). Comparison of Region-based CNN Methods for Defects Detection on Metal Surface, 67(7), 865-870. https://doi.org/10.5370/KIEE.2018.67.7.865
- https://www.statista.com/statistics/808190/worldwide-large-s cale-visual-recognition-challenge-error-rates/
- https://kr.mathworks.com/help/deeplearning/examples/traindeep-learning-network-to-classify-new-images.html