DOI QR코드

DOI QR Code

소프트맥스 함수 특성을 활용한 침입탐지 모델의 공격 트래픽 분류성능 향상 방안

Improvement of Attack Traffic Classification Performance of Intrusion Detection Model Using the Characteristics of Softmax Function

  • 김영원 (국방대학교 국방과학학과) ;
  • 이수진 (국방대학교 국방과학학과)
  • 투고 : 2020.09.22
  • 심사 : 2020.10.12
  • 발행 : 2020.10.31

초록

현실 세계에서는 기존에 알려지지 않은 새로운 유형의 변종 공격이 끊임없이 등장하고 있지만, 인공신경망과 지도학습을 통해 개발된 공격 트래픽 분류모델은 학습을 실시하지 않은 새로운 유형의 공격을 제대로 탐지하지 못한다. 기존 연구들 대부분은 이러한 문제점을 간과하고 인공신경망의 구조 개선에만 집중한 결과, 다수의 새로운 공격을 정상 트래픽으로 분류하는 현상이 빈번하게 발생하여 공격 트래픽 분류성능이 심각하게 저하되었다. 한편, 다중분류 문제에서 각 클래스에 대한 분류가 정답일 확률을 결과값으로 출력하는 소프트맥스(softmax) 함수도 학습하지 않은 새로운 유형의 공격 트래픽에 대해서는 소프트맥스 점수를 제대로 산출하지 못하여 분류성능의 신뢰도 또는 정확도를 제고하는데 한계를 노출하고 있다. 이에 본 논문에서는 소프트맥스 함수의 이러한 특성을 활용하여 모델이 일정 수준 이하의 확률로 판단한 트래픽을 공격으로 분류함으로써 새로운 유형의 공격에 대한 탐지성능을 향상시키는 방안을 제안하고, 실험을 통해 효율성을 입증한다.

In the real world, new types of attacks or variants are constantly emerging, but attack traffic classification models developed through artificial neural networks and supervised learning do not properly detect new types of attacks that have not been trained. Most of the previous studies overlooked this problem and focused only on improving the structure of their artificial neural networks. As a result, a number of new attacks were frequently classified as normal traffic, and attack traffic classification performance was severly degraded. On the other hand, the softmax function, which outputs the probability that each class is correctly classified in the multi-class classification as a result, also has a significant impact on the classification performance because it fails to calculate the softmax score properly for a new type of attack traffic that has not been trained. In this paper, based on this characteristic of softmax function, we propose an efficient method to improve the classification performance against new types of attacks by classifying traffic with a probability below a certain level as attacks, and demonstrate the efficiency of our approach through experiments.

키워드

참고문헌

  1. 과학기술정보통신부, "무선데이터 트래픽 통계", Online, 2020Available:https://msit.go.kr/web/msipContents/contentsView.do?cateId=_status&artId=3067561
  2. 국경완, 공병철, "인공지능을 활용한 보안기술 개발 동향", 정보통신기획평가원 주간기술동향, 1913호, pp 5, 2019.
  3. 박형근, "정보보안에서의 인공지능 도입 분야와 주요 사업자", 시큐리티플러스, pp.3-9, 2018.
  4. A. Khraisat, I. Gondal, P. Vamplew, J. Kamruzzaman, "Survey of intrusion detection systems: techniques, datasets and challenges", Cybersecurity, pp.1-22, 2019.
  5. Y. Lecun, Y. Bengio, G. Hinton, "Deep learning", Nature, vol.521, no.7553, pp.436-444, 2015. https://doi.org/10.1038/nature14539
  6. W. Kehe, C. Zuge, L. Wei, "A Novel Intrusion Detection Model for a Massive Network Using Convolutional Neural Networks", IEEE Access, vol.6, pp.50850-50859, 2018. https://doi.org/10.1109/access.2018.2868993
  7. M. A. Salama, H. F. Eid, R. A. Ramadan, A. Darwish, A. E. Hassanien, "Hybrid intelligent intrusion detection scheme", Soft Computing in Industrial Applications, Berlin, Germany:Springer, pp.293-303, 2011.
  8. U. Fiore, F. Palmieri, A. Castiglione, A. De Santis, "Network anomaly detection with the restricted Boltzmann machine", Neurocomputing, vol.122, pp.13-23, Dec, 2013. https://doi.org/10.1016/j.neucom.2012.11.050
  9. J. Kim, J. Kim, H. L. T. Thu, H. Kim, "Long short term memory recurrent neural network classifier for intrusion detection", Proc. Int. Conf. Platform Service, pp.1-5, 2016.
  10. T. T. H. Le, J. Kim, H. Kim, "An effective intrusion detection classifier using long short-term memory with gradient descent optimization", Proc. Int. Conf. Platform Technol. Service, pp.1-6, 2017.
  11. R. Vinayakumar, K. P. Soman, P. Poornachandran, "Applying convolutional neural network for network intrusion detection", Proc. Int. Conf. Adv. Comput. Commun. Inform., pp.1222-1228, 2017.
  12. W. Wang, M. Zhu, X. Zeng, X. Ye, Y. Sheng, "Malware traffic classification using convolutional neural network for representation learning", Proc. Int. Conf. Inf. Netw., pp.712-717, Jan. 2017.
  13. M. Wang, J. Li, "Network intrusion detection model based on convolutional neural network", J. Inf. Secur. Res., vol.3, pp.990-994, 2017.
  14. E. Min, J. Long, Q. Liu, J. Cui, W. Chen, "TR-IDS: Anomaly-based intrusion detection through text-convolutional neural network and random forest", Secur. Commun. Netw., vol. 2018, Jul. 2018.
  15. W. Wang, "HAST-IDS: Learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection", IEEE Access, vol.6, pp.1792-1806, 2018. https://doi.org/10.1109/access.2017.2780250
  16. L. Peng, H. Zhang, Y. Chen, B. Yang, "Imbalanced traffic identification using an imbalanced data gravitation-based classification model", Comput. Commun., vol. 102, pp. 177-189, 2016. https://doi.org/10.1016/j.comcom.2016.05.010
  17. Y. Liu, S. Liu, X. Zhao, "Intrusion detection algorithm based on convolutional neural network", Beijing Ligong Daxue Xuebao/Trans. Beijing Inst. Technol., vol.37, no.12, pp.1271-1275, 2017.
  18. Chuanlong Y., Yuefei Z., Shengli L., Jinlong F., Hetong Z, "Enhancing network intrusion detection classifiers using supervised adversarial training", The Journal of Supercomputing, pp. 6690-6719, 2020.
  19. G. Ian, P. Jean, M. Mehdi, X. Bing, W. David, O. Sherjil, C. Aaron, B. Yoshua, "Generative Adversarial Nets", Neural Information Processing Systems, pp.2672-2680, 2014.
  20. O. Augustus, "Semi-Supervised Learning with Generative Adversarial Networks", arXiv preprint arXiv:1606.01583, 2016.
  21. T. Mahbod, B. Ebrahim, L. Wei, A. AlI, "A Detailed Analysis of the KDD CUP 99 Data Set", 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, 2009.