References
- Aljawarneh, S., Aldwairi, M., Yassein, M. B., "Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model", J. Comput. Sci. 25, 152-160, 2018. https://doi.org/10.1016/j.jocs.2017.03.006
- Alrawashdeh, K. and Purdy, C., "Toward an online anomaly intrusion detection system based on deep learning", in Proc. 15th IEEE Int. Conf. Mach. Learn. Appl., Anaheim, CA, USA, pp. 195-200, 2016.
- DARPA98, MIT Lincoln Labs, 1998 DARPA Intrusion Detection Evaluation. Available on: http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/index.html, 2009.
- Djenouri, Y., Belhadi, A., Lin, J. C.-W., Cano, A., "Adapted k-nearest neighbors for detecting anomalies on spatio-temporal traffic flow", IEEE Access 7, 10015-10027, 2019. https://doi.org/10.1109/access.2019.2891933
- Ganeshan, R., Rodrigues, S. P., "I-AHSDT, "intrusion detection using adaptive dynamic directive operative fractional lion clustering and hyperbolic secant-based decision tree classifier", J. Exp. Theoret. Artif. Intell. 30(6), 887-910, 2018. https://doi.org/10.1080/0952813x.2018.1509379
- Glorot, X. Bengio, Y., March. "Understanding the difficulty of training deep feedforward neural networks", In Proceedings of the thirteenth Int. Conf. on artificial intelligence and statistics, pp. 249-256, 2010.
- Han, H., Lu, X. L., Lu, J., Bo, C., & Yong, R. L., "Data mining aided signature discovery in network-based intrusion detection system", ACM SIGOPS Operating Systems Review, Vol. 36, Issue 4, pp. 7-13, 2002. https://doi.org/10.1145/583800.583801
- He, K., Zhang, X., Ren, S., & Sun, J., "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification", In Proceedings of the IEEE international conference on computer vision pp. 1026-1034, 2015.
- Karami, A., "An anomaly-based intrusion detection system in presence of benign outliers with visualization capabilities", Expert Syst. Appl. 108, 36-60, 2018. https://doi.org/10.1016/j.eswa.2018.04.038
- KDD99, KDD Cup 1999 Dataset, http://kdd.ics.uci.edu/databases/kddcup99/kdd cup99.html, 2009.
- Kim, J., & Kim, H., "An Effective Intrusion Detection Classifier Using Long Short-Term Platform Technology and Service (PlatCon), 2017 Int. Conf. on, pp. 1-6, 2017a.
- Kim, J., Shin, N., Jo, S. Y. and Kim, S. H., "Method of intrusion detection using deep neural network", In 2017 IEEE International Conference on Big Data and Smart Computing (BigComp), pp. 313-316. IEEE, 2017b.
- Lee, W., Stolfo, S.J., Chan, P. K., Eskin, E., Fan, W., Miller, M., Hershkop, S. and Zhang, J., "Real time data mining-based intrusion detection", DARPA Information Survivability Conf., 2001.
- Northcutt, S., Novak, J., Network intrusion detection an analyst's handbook, 2nd Edition, New Riders, 2002.
- Rahul, R. K., T. Anjali, Vijay Krishna Menon, and K. P. Soman. "Deep learning for network flow analysis and malware classification", Int. Symp. on Security in Computing and Communication, pp. 226-235. Springer, Singapore, 2017.
- Shang, W., Cui, J., Song, C., Zhao, J., Zeng, P., "Research on industrial control anomaly detection based on FCM and SVM", In 2018 17th IEEE Int. Conf. on Trust, Security and Privacy in Computing and Communications/12th IEEE Int. Conf. on Big Data Science and Engineering(TrustCom/ BigDataSE), pp. 218 222. IEEE, 2018.
- Staudemeyer, R. C., "Applying long short-term memory recurrent neural networks to intrusion detection", South African Computer Journal, vol. 56, no. 1, pp. 136-154, 2015.
- Sultana, N., Chilamkurti, N., Peng, W., & Alhadad, R. "Survey on SDN based network intrusion detection system using machine learning approaches", Peer-to-Peer Networking and Applications, vol. 12, no. 2, pp. 493-501. 2019. https://doi.org/10.1007/s12083-017-0630-0
- Tian, Y., Mirzabagheri, M., Bamakan, S. M. H., Wang, H., Qiang, Q., "Ramp loss one-class support vector machine; a robust and effective approach to anomaly detection problems", Neurocomputing 310, 223-235, 2018. https://doi.org/10.1016/j.neucom.2018.05.027
- Wang, X., Yin, S., Li, H., Wang, J., & Teng, L., "A Network Intrusion Detection Method Based on Deep Multi-scale Convolutional Neural Network", Int. Journal of Wireless Information Networks, 1-15, 2020.
- Xin, Y., Kong, L., Liu, Z., Chen, Y., Li, Y., Zhu, H., Gao, M., Hou, H. and Wang, C., "Machine learning and deep learning methods for cybersecurity", IEEE Access 6, 35365-35381, 2018. https://doi.org/10.1109/access.2018.2836950