DOI QR코드

DOI QR Code

적외선 라디오미터 관측 자료를 활용한 해양 피층 수온 산출

Retrieval of Oceanic Skin Sea Surface Temperature using Infrared Sea Surface Temperature Autonomous Radiometer (ISAR) Radiance Measurements

  • 김희영 (서울대학교 과학교육과) ;
  • 박경애 (서울대학교 지구과학교육과/해양연구소)
  • Kim, Hee-Young (Department of Science Education, Seoul National University) ;
  • Park, Kyung-Ae (Department of Earth Science Education/Research Institute of Oceanography, Seoul National University)
  • 투고 : 2020.12.08
  • 심사 : 2020.12.28
  • 발행 : 2020.12.31

초록

기후변화와 지구환경변화에 중요한 역할을 하고 있는 해수면온도는 인공위성 적외선 센서가 관측하는 피층 수온과 측기들이 관측하는 표층 수온으로 나누어질 수 있다. 국외 여러 기관에서 보급되고 있는 해수면온도 관측 자료들은 각각 서로 다른 깊이의 수온을 나타내고 있어서 해양 피층과 표층 수온 사이의 관계를 이해하는 것은 매우 중요하다. 본 연구에서는 적외선 라디오미터를 해양조사선에 장착하기 위한 시스템을 설계하고 부착하고 운용하여 국내에서 처음으로 해양 피층 수온을 산출할 수 있는 관측 환경을 구축하였다. 선박 관측 전에 실험실에서 라디오미터 기기의 검보정을 실시하여 보정 계수를 산출하였다. 관측된 해수면에서 방출된 복사에너지와 하늘 복사에너지를 피층 수온으로 산출하는 일련의 과정을 적용하였다. 산출된 피층 해수면온도를 현장 관측 표층 수온자료와 비교하여 표층과 피층 수온 차이를 정량적으로 조사하고자 하였으며, Himawari-8 정지궤도 위성 해수면온도 자료와의 비교를 통해 해양 상층 연직구조의 특성을 이해하고자 하였다. 2020년 4월 21일부터 5월 6일까지 남해안의 장목항과 동해 남부를 관측한 해양 피층 수온은 전체적으로 표층 수온과 0.76℃ 정도의 차이를 보였다. 또한 이 두 수온 차이의 평균제곱근오차는 약 0.6℃에서 0.9℃까지의 일간변화를 가지고 있었으며, 하루 중 1-3시에 0.83-0.89℃로 가장 크게 나타났으며, 15시에 0.59℃로 최소의 차이를 가지고 있었다. 또한 편차도 0.47-0.75℃의 일간변화를 나타내었다. 해양 피층 관측 수온과 위성 해수면 온도 간 차이는 약 0.74℃의 평균제곱근오차, 0.37℃의 편차를 나타냈다. 본 연구의 분석을 통해 관측 수심에 따른 피층-표층 수온의 차이를 확인할 수 있었으며, 피층-표층 수온 차의 계절적 변화를 정량적으로 이해하고 또 변동 요인과의 관련성을 연구하기 위하여 연구조사선을 이용한 추가적인 연안 및 대양 관측이 지속적으로 진행되어야 함을 시사한다.

Sea surface temperature (SST), which plays an important role in climate change and global environmental change, can be divided into skin sea surface temperature (SSST) observed by satellite infrared sensors and the bulk temperature of sea water (BSST) measured by instruments. As sea surface temperature products distributed by many overseas institutions represent temperatures at different depths, it is essential to understand the relationship between the SSST and the BSST. In this study, we constructed an observation system of infrared radiometer onboard a marine research vessel for the first time in Korea to measure the SSST. The calibration coefficients were prepared by performing the calibration procedure of the radiometer device in the laboratory prior to the shipborne observation. A series of processes were applied to calculate the temperature of the layer of radiance emitted from the sea surface as well as that from the sky. The differences in skin-bulk temperatures were investigated quantitatively and the characteristics of the vertical structure of temperatures in the upper ocean were understood through comparison with Himawari-8 geostationary satellite SSTs. Comparison of the skin-bulk temperature differences illustrated overall differences of about 0.76℃ at Jangmok port in the southern coast and the offshore region of the eastern coast of the Korean Peninsula from 21 April to May 6, 2020. In addition, the root-mean-square error of the skin-bulk temperature differences showed daily variation from 0.6℃ to 0.9℃, with the largest difference of 0.83-0.89℃ at 1-3 KST during the daytime and the smallest difference of 0.59℃ at 15 KST. The bias also revealed clear diurnal variation at a range of 0.47-0.75℃. The difference between the observed skin sea surface temperature and the satellite sea surface temperature showed a mean square error of approximately 0.74℃ and a bias of 0.37℃. The analysis of this study confirmed the difference in the skin-bulk temperatures according to the observation depth. This suggests that further ocean shipborne infrared radiometer observations should be carried out continuously in the offshore regions to understand diurnal variation as well as seasonal variations of the skin-bulk SSTs and their relations to potential causes.

키워드

과제정보

본 연구는 기상청 "기상·지진See-At기술개발연구사업(KMI2018-05110)"의 지원을 받아 수행되었습니다. 이사부호 Thermosalinograph 자료는 한국해양과학기술원 "이사부호 운영사업"의 지원을 받아 제공받았으며, 이에 도움을 주신 김덕진, 강한구, 이경목, 정우영, 김대연, 허상도, 백세훈 연구원님께 감사드립니다. ISAR 설치 및 운용과 관련하여 도움을 주신 (주)오트로닉스께도 감사를 드립니다.

참고문헌

  1. Alappattu, D.P., Wang, Q., Yamaguchi, R., Lind, R.J., Reynolds, M., and Christman, A.J., 2017, Warm layer and cool skin corrections for bulk water temperature measurements for airsea interaction studies. Journal of Geophysical Research: Oceans, 122(8), 6470-6481. https://doi.org/10.1002/2017jc012688
  2. Bertie, J.E. and Lan, Z., 1996, Infrared intensities of liquids XX: The intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O (l) at 25 C between 15,000 and 1 cm-1. Applied Spectroscopy, 50(8), 1047-1057. https://doi.org/10.1366/0003702963905385
  3. Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y., Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama, H., Uesawa, D., Yokota, H., and Yoshida, R., 2016, An introduction to Himawari-8/9-Japan's newgeneration geostationary meteorological satellites. Journal of the Meteorological Society of Japan, 94, 151-183. https://doi.org/10.2151/jmsj.2016-009
  4. Donlon, C.J. and Nightingale, T.J., 2000, Effect of atmospheric radiance errors in radiometric sea-surface skin temperature measurements. Applied optics, 39(15), 2387-2392. https://doi.org/10.1364/AO.39.002387
  5. Donlon, C.J., Minnett, P.J., Gentemann, C., Nightingale, T.J., Barton, I.J., Ward, B., and Murray, J., 2002, Toward improved validation of satel-lite sea surface skin temperature measurements for climate research, Journal of Climate, 15, 353-369. https://doi.org/10.1175/1520-0442(2002)015<0353:TIVOSS>2.0.CO;2
  6. Donlon, C.J., Robinson, I.S., Casey, K.S., Vazquez-Cuervo, J., Armstrong, E., Arino, O., ..., and Barton, I., 2007, The global ocean data assimilation experiment high-resolution sea surface temperature pilot project. Bulletin of the American Meteorological Society, 88(8), 1197-1214. https://doi.org/10.1175/BAMS-88-8-1197
  7. Donlon, C,J., Robinson, I.S., Wimmer, W., Fisher, G., Reynolds, M., Edwards, R., and Nightingale, T.J., 2008, An infrared sea surface temperature autonomous radiometer (ISAR) for deployment aboard volunteer observing ships (VOS). Journal of Atmospheric and Oceanic Technology, 25(1), 93-113. https://doi.org/10.1175/2007JTECHO505.1
  8. Emery, W.J., Castro, S., Wick, G.A., Schluessel, P., and Donlon, C., 2001, Estimating sea surface temperature from infrared satellite and in situ temperature data, Bulletin of the American Meteorological Society, 82(12), 2773. https://doi.org/10.1175/1520-0477(2001)082<2773:ESSTFI>2.3.CO;2
  9. Fairall, C., Bradley, E., Godfrey, J., Wick, G., Edson, J., and Young, G., 1996, Cool-skin and warm-layer effects on sea surface temperature, Journal of Geophysical Research, 101(C1), 1295-1308. https://doi.org/10.1029/95JC03190
  10. Flament, P., Firing, J., Sawyer, M., and Trefois, C., 1994, Amplitude and horizontal structure of a large diurnal sea surface warming event during the Coastal Ocean Dynamics Experiment. Journal of physical oceanography, 24(1), 124-139. https://doi.org/10.1175/1520-0485(1994)024<0124:AAHSOA>2.0.CO;2
  11. Gentemann, C.L., Donlon, C.J., Stuart-Menteth, A., and Wentz, F.J., 2003, Diurnal signals in satellite sea surface temperature measurements. Geophysical Research Letter, 30, 1140. https://doi.org/10.1029/2002gl016291
  12. Grassl, H. and Hinzpeter, H., 1975, The cool skin of the ocean. WMO GATE Rep. 14.
  13. Jang, J.C. and Park, K.A., 2019, High-resolution sea surface temperature retrieval from Landsat 8 OLI/TIRS data at coastal regions. Remote Sensing, 11(22), 2687. https://doi.org/10.3390/rs11222687
  14. Jung, G.S., Yoon, B.Y., and Lim, C.S., 2018, A study on the corrosion of Cu-Ni alloy in chlorinated seawater for marine applications. Corrosion Science and Technology, 17(4), 176-182.
  15. Kang, K.M., Kim, D.J., Hwang, J.H., Choi, C., Nam, S., Kim, S., ..., and Lee, J., 2017, Establishment of thermal infrared observation system on Ieodo Ocean Research Station for time-series sea surface temperature extraction. The Sea, 22(3), 57-68. https://doi.org/10.7850/jkso.2017.22.3.057
  16. Kent, E.T., Forrester, T., and Taylor, P.K., 1996, A comparison of the oceanic skin effect parameterizations using ship-borne radiometer data. Journal of Geophysical Research, 101, 16 649-16666. https://doi.org/10.1029/96JC01054
  17. Lee, J.H., Chung, B.C., Hwang, K.C., Jeon, D.C., Hwang, S.C., and Lee, H.W., 2002, Thermosalinograph measurements in the western Pacific Ocean in May and June, 2001. Ocean and Polar Research, 24(3), 207-213. https://doi.org/10.4217/OPR.2002.24.3.207
  18. Minnett, P.J., 2003, Radiometric measurements of the seasurface skin temperature-The competing roles of the diurnal thermocline and the cool skin, International Journal of Remote Sensing, 24, 5033-5047. https://doi.org/10.1080/0143116031000095880
  19. Minnett, P.J., Smith, M., and Ward, B., 2011, Measurements of the oceanic thermal skin effect. Deep Sea Research, Part II, 58, 861-868. https://doi.org/10.1016/j.dsr2.2010.10.024
  20. Park, K.A., Sakaida, F., and Kawamura, H., 2008, Oceanic skin-bulk temperature difference through the comparison of satellite-observed sea surface temperature and in-situ measurements. Korean Journal of Remote Sensing, 24(4), 273-287.
  21. Rayner, N.A., Parker, D.E., Horton, E.B., Folland, C.K., Alexander, L.V., Rowell, D.P., Kent, E.C., and Kaplan, A., 2003, Global analyses of seasurface temperature, sea ice, and night marine air temperature since thelate nineteenth century. Journal of Geophysical Research, 108(D14), 4407. https://doi.org/10.1029/2002JD002670
  22. Reynolds, R.W. and Smith, T.M., 1994, Improved global sea surface temperature analyses using optimum interpolation. Journal of Climate, 7, 929-948. https://doi.org/10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2
  23. Reynolds, R.W., Rayner, N.A., Smith, T.M., Stokes, D.C., and Wang, W., 2002, An improved in situ and satellite SST analysis for climate. Journal of Climate, 15, 1609-1625. https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2
  24. Reverdin, G., Morisset, S., Bellenger, H., Boutin, J., Martin, N., Blouch, P., ..., and Ward, B., 2013, Near-sea surface temperature stratification from SVP drifters. Journal of Atmospheric and Oceanic Technology, 30(8), 1867-1883. https://doi.org/10.1175/JTECH-D-12-00182.1
  25. Saunders, P.M., 1967, The temperature at the ocean-air interface. Journal of Atmospheric Sciences, 24, 269-273. https://doi.org/10.1175/1520-0469(1967)024<0269:TTATOA>2.0.CO;2
  26. Saurez, M., Emery, W.J., and Wick, G., 1997, The Multi-Channel Infrared Sea Truth Radiometric Calibrator (MISTRC). Journal of Atmospheric and Oceanic Technology, 14, 243-253. https://doi.org/10.1175/1520-0426(1997)014<0243:TMCIST>2.0.CO;2
  27. Schluessel, P., Emery, W.J., Grassl, H., and Mammen, T., 1990, On the bulkskin temperature difference and its impact on satellite remote sensing of sea surface temperature. Journal of Geophysical Research: Oceans, 95(C8), 13341-13356. https://doi.org/10.1029/JC095iC08p13341
  28. Thomas, J.P. and Turner, J., 1995, Validation of Atlantic Ocean surface temperatures measured by the ERS-1 along track scanning radiometer. Journal of Atmospheric and Oceanic Technology, 12, 1303-1312. https://doi.org/10.1175/1520-0426(1995)012<1303:VOAOSS>2.0.CO;2
  29. Wimmer, W. and Robinson, I.S., 2016, The ISAR instrument uncertainty model. Journal of Atmospheric and Oceanic Technology, 33(11), 2415-2433. https://doi.org/10.1175/JTECH-D-16-0096.1
  30. Woo, H.J., Park, K.A., Li, X., and Lee, E.Y., 2018, Sea surface temperature retrieval from the first Korean geostationary satellite COMS data: Validation and error assessment. Remote Sensing, 10(12), 1916. https://doi.org/10.3390/rs10121916
  31. Woodcock, A.H., 1941, Surface cooling and streaming in shallow fresh and salt waters. Journal of Marine Research, 4, 153-161.
  32. Zhang, H., Beggs, H., Ignatov, A., and Babanin, A.V., 2020, Nighttime cool skin effect observed from Infrared SST Autonomous Radiometer (ISAR) and depth temperatures. Journal of Atmospheric and Oceanic Technology, 37(1), 33-46. https://doi.org/10.1175/jtech-d-19-0161.1