DOI QR코드

DOI QR Code

기상드론을 이용한 보성 지역 기상 인자의 연직 측정 및 분석

Vertical Measurement and Analysis of Meteorological Factors Over Boseong Region Using Meteorological Drones

  • 정지효 (국립기상과학원 재해기상연구) ;
  • 신승숙 (국립기상과학원 현업운영개발부) ;
  • 황성은 (국립기상과학원 현업운영개발부) ;
  • 이승호 ((재)국제기후환경센터 연구개발실) ;
  • 이승협 (국립기상과학원 재해기상연구) ;
  • 김백조 (국립기상과학원 재해기상연구) ;
  • 김승범 (국립기상과학원 재해기상연구)
  • Chong, Jihyo (High Impact Weather Research Department, National Institute of Meteorological Sciences) ;
  • Shin, Seungsook (Operational Systems Development Department, National Institute Meteorological Sciences) ;
  • Hwang, Sung Eun (Operational Systems Development Department, National Institute Meteorological Sciences) ;
  • Lee, Seungho (International Climate & Environment Center) ;
  • Lee, Seung-Hyeop (High Impact Weather Research Department, National Institute of Meteorological Sciences) ;
  • Kim, Baek-Jo (High Impact Weather Research Department, National Institute of Meteorological Sciences) ;
  • Kim, Seungbum (High Impact Weather Research Department, National Institute of Meteorological Sciences)
  • 투고 : 2020.09.02
  • 심사 : 2020.12.11
  • 발행 : 2020.12.31

초록

기상현상관측은 기상청에서 다양한 방법(지상, 고층, 해양, 항공, 등)으로 관측되고 있다. 하지만, 인간생활에 많은 영향을 미치는 대기경계층 관측에는 한계가 있다. 특히, 존데 또는 항공기를 이용한 기상관측은 경제적인 측면에서 상당한 비용이 필요하다. 따라서 본 연구의 목적은 기상드론을 이용하여 국지기상현상 중 해륙풍 연직분포에 대한 기상 인자들을 측정하고 분석하는 것이다. 해륙풍의 공간적 분포를 연구하기 위해 보성지역 표준기상관측소의 보성종합기상탑을 포함한 다른 세 지점(해안가, 산기슭, 산중턱)에 동일한 통합기상센서를 각 드론에 탑재하였다. 2018년 8월 4일 1100 LST부터 1800 LST까지 30분 간격으로 최대 400 m 고도까지 기온, 상대 습도, 풍향, 풍속, 기압의 연직 프로파일 관측이 수행되었다. 기온, 상대 습도, 기압에 대한 기상현상의 공간적 특성은 네 지점에서 보이지 않았다. 강한 일사량 시간대에 중간지점(~100 m)에서 강한 바람(~8 m s-1)이 관측되었고, 오후에는 풍향이 내륙지역의 상층부터 서풍으로 바뀌었다. 기상드론을 이용하여 관측한 하부 대기층의 분석결과는 보다 정확한 기상예보 향상에 도움이 될 것으로 기대된다.

Meteorological phenomena are observed by the Korea Meteorological Administration in a variety of ways (e.g., surface, upper-air, marine, ocean, and aviation). However, there are limits to the meteorological observation of the planetary boundary layer (PBL) that greatly affects human life. In particular, observations using a sonde or aircraft require significant observational costs in economic terms. Therefore, the goal of this study was to measure and analyze the meteorological factors of the vertical distribution of the see-land breeze among local meteorological phenomena using meteorological drones. To investigate the spatial distribution of the see-land breeze, a same integrated meteorological sensor was mounted on each drone at three different points (seaside, bottom of mountain, and mountainside), including the Boseong tall tower (BTT) at the Boseong Standard Weather Observatory (BSWO) in the Boseong region. Vertical profile observations for air temperature, relative humidity, wind direction, wind speed, and air pressure were conducted up to 400 m every 30 minutes from 1100 LST to 1800 LST on August 4, 2018. The spatial characteristics of meteorological phenomena for temperature, relative humidity, and atmospheric pressure were not shown at the four points. Strong winds (~8 m s-1) were observed from the midpoint (~100 m) at strong solar radiation hour, and in the afternoon the wind direction changed from the upper layer at the inland area to the west wind. It is expected that the analysis results of the lower atmospheric layer observed using the meteorological drone may help to improve the weather forecast more accurately.

키워드

과제정보

본 연구는 기상청 국립기상과학원 「위험기상에 대한 분석·예보의 융합기술 고도화」(KMA2018-00121, 1365003081)의 지원으로 수행되었습니다. 논문에 대해 많은 조언을 해주신 심사위원님들께 감사를 드립니다.

참고문헌

  1. Abbs, D.J. and Physick, W.L., 1992, Sea-breeze observations and modeling: a review. Australian Meteorological Magazine, 41, 7-19.
  2. Ahn, Y., Moon, J., Kim, B.J., Lee, W.K., and Cha, S., 2018, A Study on Development of Small Sensor Observation System Based on IoT Using Drone, Journal of Environmental Science International, 27(11), 1155-1167. https://doi.org/10.5322/JESI.2018.27.11.1155
  3. Balling, R.C., Skindlov, J.A., and Philips, D.H., 1990, The impact of increasing summer mean temperatures on extreme maximum and minimum temperatures in Phoenix, Arizona, Journal of Climate, 3, 1491-1494. https://doi.org/10.1175/1520-0442(1990)003<1491:TIOISM>2.0.CO;2
  4. Borne, K., Chen, D., and Nunez, M., 1998, A method for finding sea breeze days under stable synoptic conditions and its application to the Swedish west coast, International Journal of Climatology, 18, 901-914. https://doi.org/10.1002/(SICI)1097-0088(19980630)18:8<901::AID-JOC295>3.0.CO;2-F
  5. Changnon, S.A., Huff, F.A., and Semonin, R.G., 1971, METROMEX: an investigation of inadvertent weather modification, Bulletin of the American Meteorological Society, 52, 958-968. https://doi.org/10.1175/1520-0477(1971)052<0958:MAIOIW>2.0.CO;2
  6. Chong, J., Lee, S., Shin, S., Hwang, S.E., Lee, Y.T., Kim, J., and Kim, S., 2019, Research on the Meteorological Technology Development using Drones in the Fourth Industrial Revolution, Journal of the Korea Contents Association, 19(11), 12-21. https://doi.org/10.5392/JKCA.2019.19.11.012
  7. Dixon, PG, Mote, T., 2003, Patterns and causes of Atlanta's urban heat island-initiated precipitation, Journal of Applied Meteorology, 2, 1273-1284. https://doi.org/10.1175/1520-0450(2003)042<1273:PACOAU>2.0.CO;2
  8. Freitas, D.E., Rozoff, M.C., Cotton, R.W., Silva Dias, and L.P., 2006, Interactions of an urban heat island and seabreeze circulations during winter over the metropolitan area of Sao Paulo, Brazil, Boundary-Layer Meteorology, 122, 43-65. https://doi.org/10.1007/s10546-006-9091-3
  9. Garratt, J., 1994, Review: the atmospheric boundary layer. Earth-Science Reviews, 37, 89-134 https://doi.org/10.1016/0012-8252(94)90026-4
  10. Hyun, J.H., Park, H., and Chung, G., 2019, Effects of the Difference between ASOS and AWS Data on Runoff Characteristics, Journal of the Korean Society of Hazard Mitigation, 19(7), 443-449. https://doi.org/10.9798/kosham.2019.19.7.443
  11. Kim, C. and Jhun, J., 1992, Numerical Simulations of the Three Dimensional Land-Sea Breezes Under Synoptic Flows over South Korea, Journal of Korean Meteor. Society, 28(2).
  12. Kim, N.H., 2018, Development of atmospheric environment information collection system using drone, Smart Media Journal, 7(4), 40-478.
  13. Kim, M. and Kwon, B.H., 2019, Estimation of Sensible Heat Flux and Atmospheric Boundary Layer Height Using an Unmanned Aerial Vehicle. Atmosphere, 10, 363. https://doi.org/10.3390/atmos10070363
  14. KMA, National Institute of Meteorological Science, 2016, Application of Boseong Global Standard Observatory (III), 11-1360620-000083-01, Jeju, Korea.
  15. Lim, H. Lee, Y., 2019, Characteristics of Sea Breezes at Coastal Area in Boseong, Atmosphere. Korean Meteorological Society, 29(1), 41-51.
  16. Miller, S.T.K., Keim, B.D., Talbot, R.W., and Mao, H., 2003, Sea breeze: structure, forecasting, and impacts. Reviews of Geophysics, 41(3), 1011. https://doi.org/10.1029/2003rg000124
  17. Moon, S., Jang, K., and Lee, H., 1990, A Numerical Model Study of the Land and Sea Breeze, Journal of Korean Meteorological Society, 26(2).
  18. Nakane, H. and Sasano, Y., 1986, Structure of a sea-breeze front revealed by scanning lidar observation, Journal of the Meteorological Society of Japan, 64(5), 787-792. https://doi.org/10.2151/jmsj1965.64.5_787
  19. NamGung, J., Yu, J., Kim, N., Choi, M., Ham, D., Kim, H., Jang Y., and Choi, E., 2005, The Effect of Inversion Layer on the Land and Sea Breeze Circulations near the Gangneung, Journal of Atmosphere, 38(4), 229-239.
  20. Oh, H., Lee, S., Choi, D., and Kwak, K., 2020, Comparison of the Vertical PM2.5 Distributions according to Atmospheric Stability Using a Drone during Open Burning Events, Journal of Korean Society for Atmospheric Environment, 36(1), 108-118. https://doi.org/10.5572/kosae.2020.36.1.108
  21. Oke, T.R., 1978, Boundary layer climates (2nd ed.), Rutledge, London and New York, 435.
  22. Pan, L., Xu, J., Tie, X., Mao, X., Gao, W., and Chang, L., 2019, Long-term measurements of planetary boundary layer height and interactions with PM2.5 in Shanghai, China, Atmospheric Pollution Research, 10, 989-996. https://doi.org/10.1016/j.apr.2019.01.007
  23. Park, M. and Chae, J., 2018, Features of sea-land-breeze circulation over the Seoul Metropolitan Area, Geoscience Letters, 5, 28. https://doi.org/10.1186/s40562-018-0127-6
  24. Park, S.U. and Yoon, I.H., 1989, A two dimensional numerical modeling of land and sea breezes as a function of prevailing synoptic winds, Journal of the Korean Meteorological Society, 25, 81-93.
  25. Park, S., 1990, Results of a Three Dimensional Numerical Model of Land-Sea Breeze over South Korea, Journal of the Korean Meteorological Society, 26(2).
  26. Park, S., 1992, Estimation of Wind Variances in the Boundary Layer with Results of the Three Dimensional Land-Sea Breeze Model over South Korea, Journal of the Korean Meteorological Society, 28(4).
  27. Quan, J., Gao, Y., Zhang, Q., Tie, X., Cao, J., Han, S., Meng, J., Chen, P., and Zhao, D., 2013, Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations, Particuology, 11(1), 34-40. https://doi.org/10.1016/j.partic.2012.04.005
  28. Simpson J.E., 1987, Gravity currents: in the environment and the laboratory. Wiley, New York, 244.
  29. Stull, R.b., (Ed.), 1988, An Introduction to Boundary Layer Meteorology, Springer, Netherlands, Dordrecht.
  30. Wagner, N.L., Riedel, T.P., Roberts, J.M., Thornton, J.A., Angevine, W.M., Williams, E.J., Lerner, B.M., Vlasenko, A., Li, S.M., Dub, W.P., Coffman, D.J., Bon, D.M., de Gouw, J.A., Kuster, W.C., Gilman, J.B., and Brown, S.S., 2012, The sea breeze/land breeze circulation in Los Angeles and its influence on nitryl chloride production in this region, Journal of Geophysical Research: Atmospheres, 117, 1984-2012.
  31. Washenfelder, R.A., Young, C.J., Brown, S.S., Angevine, W.M., Atlas, E.L., Blake, D.R., Bon, D.M., Cubison, M.J., de Gouw, J.A., Dusanter, S., Flynn, J., Gilman, J.B., Graus, M., Griffith, S., Grossberg, N., Hayes, P.L., Jimenez, J.L., Kuster, W.C., Lefer, B.L., Pollack, I.B., Ryerson, T.B., Stark, H., Stevens, P.S., and Trainer, M.K., 2011, The glyoxal budget and its contribution to organic aerosol for Los Angeles, California during CalNex 2010. Journal of Geophysical Research: Atmospheres, 116, 1984-2012.
  32. Yoshikado, H. and Kondo, H., 1989, Inland penetration of the sea breeze over the suburban area of Tokyo, Bound-Layer Meteorology, 48, 389-407. https://doi.org/10.1007/BF00123061