DOI QR코드

DOI QR Code

Quantitative Analysis of Rietveld Method Minerals by Sintering Temperature of Cement Clinkers with Fly Ash

리트벨트법에 의한 석탄재를 적용한 시멘트 클링커의 소성 온도별 광물 정량분석

  • 유동우 (군산대학교 신소재공학과) ;
  • 임영진 (건설소재 알앤디(주)) ;
  • 박태균 (재단법인 영월산업진흥원 본부) ;
  • 이창현 ((주)삼표시멘트 생산기술)
  • Received : 2020.10.30
  • Accepted : 2020.11.13
  • Published : 2020.12.30

Abstract

In this study, cement clinkers were sintered at each temperature by replacing some of the clay components of cement clinkers with coal materials. The mineral phase change of sintered cement clinker was quantitatively analyzed by XRD-Rietveld method. As the sintering temperature of cement clinker increased, the amount of belite decreased, the amount of alite increased, and the amount of free-CaO decreased. The form of alite and belite could be distinguished at sintering temperature of 1450℃ or higher. The crystal size was greatly increased at 1500℃ sintering. It was confirmed that the excessive sintering was progressed. Free-CaO decreased with the increase of sintering temperature. At 1450 ℃ or higher, it was less than 0.5%. In 1450℃ or greater, it is determined that enough sintering is included. Therefore, the application of fly ash as a raw material of cement clinker was judged to be usable as a source of chemical components of alumina and iron raw materials.

본 연구에서는 시멘트 클링커의 원료 중 점토성분의 일부를 석탄재로 대체하여 시멘트 클링커를 각 온도별로 소성하여 시멘트 클링커의 광물상의 변화를 XRD-Rietveld법을 이용하여 정량분석하였다. 시멘트 클링커의 소성온도가 증가할수록 Belite의 양은 감소하고 Alite의 양은 증가하였으며, 유리 CaO의 양도 감소 되었다. Alite와 Belite의 형태는 1450℃ 이상에서부터 형태를 구분 할 수 있었으며. 1500℃ 소성에서는 결정의 크기가 조대하게 성장하여, 과소성이 진행된 것으로 판단된다. 유리 CaO의 경우 소성온도의 상승에 따라 감소하였고, 1450℃ 이상에서 0.5% 이하로 나타나, 1450℃ 이상에서는 충분한 소성이 이루어진 것으로 판단된다. 따라서 시멘트 클링커의 원료 중 알루미나질과 철질 원료의 화학성분 공급원으로서 석탄재의 활용이 가능한 것이 판단되었다.

Keywords

References

  1. Alsop, P.A., Smith, F.L. (1998a). The Cement Plant Operations Handbook, 2nd Edition, Denmark.
  2. Imlach, J.A. (1976). Non-isothermal investigation of the kinetics of reactions occurring during clinker formation, Cement and Concrete Research, 6(6), 747-755. https://doi.org/10.1016/0008-8846(76)90004-1
  3. Izumi, F. (1987). Rietan, a software package for the rietveld analysis and simulation of X-ray and neutron diffraction patterns, Europhys, Lett, 3(12), 1301-1307. https://doi.org/10.1209/0295-5075/3/12/009
  4. Jang, B.G., Jeong, C.J., Lee, J.H., Im, Y.M. (1998b). Cement Material Chemistry, 2nd Edition, Chonnam National University Press, 145-149 [in Korean].
  5. Japan Cement Association (1999). C&C Encylopedia 60-61, Japan.
  6. Kwak, B.H. (1995). A Study on the Use of Fly Ash as an Sub-Material of Clinker, Korea Cement Association [in Korean].
  7. Le Saout, G., Kocaba, V., Scrivener, K. (2011). Application of the rietveld method to the analysis of anhydrous cement, Cement and Concrete Research, 41(2), 133-148. https://doi.org/10.1016/j.cemconres.2010.10.003
  8. Lea, F.M. (1970). The Chemistry of Cem & Concr, Third edition, Chemical Publishing Company, Inc., 158-76.
  9. Lee, S.H., Kim, W.K. (2018). Portland cement manufacturing process and clinker formation mechanism, Magazine of Korea Concrete Institute, 30(3), 22-26 [in Korean].
  10. Lee, S.H., Lee, S.J., Woo, Y.Y., Park, J.S. (2014). Properties of portland cement clinker using polysilicon sludge, Journal of the Korean Recycled Construction Resources Institute, 2(4), 328-334 [in Korean]. https://doi.org/10.14190/JRCR.2014.2.4.328